

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 1/155

EMTPWorks

Report Script Language Reference

Chris Dewhurst and Jean Mahseredjian

EMTP®-EMTPWorks

www.emtp.com

http://www.emtp.com/

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 2/155

Disclaimer
Information in this document is subject to change without notice.
No part of this manual may be copied or reproduced in any form or by any means without written
permission from PGSTech.
PGSTech makes no representation or warranty with respect to the adequacy or accuracy of this
documentation or the software which it describes. In no event will PGSTech or its direct or
indirect suppliers be liable for any damages whatsoever including, but not limited to, direct,
indirect, incidental, or consequential damages of any character including, without limitation, loss
of business profits, data, business information, or any and all other commercial damages or
losses, or for any damages in excess of the list price for the license to the software and
documentation.

Copyrights

• EMTP® and EMTPWorks: © Copyright 2016-2021 Hydro-Québec, EDF and RTE.

• DesignWorks: © Copyright 1985-2011 Capilano Computing Systems Ltd., 2011-2021 by
Flying Objects Software Inc.

• ScopeView: © Copyright 2010-2021 Hydro-Québec

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 3/155

Table of Contents

Part I – Script Language Reference 9

I.1. Command Language Introduction 9

I.1.1 Basic Script Structure .. 9
I.1.2 EMTPWorks Object Types ... 11
I.1.3 Definition Commands ... 12
I.1.4 Current Design or Current Object .. 14
I.1.5 Data Types ... 14

I.1.6 Blocks .. 15

I.1.7 Command Arguments .. 15
I.1.8 Control and Escape Characters ... 16

I.1.9 Script Variables .. 17

I.1.10 Attribute Field References .. 18
I.1.11 Precedence of Field References in Pin Listings 18

I.1.12 Attribute vs. Variable References 19

I.2. Controlling Report Page Layout 20

I.2.1 Setting Page Height and Width .. 20

I.2.2 Defining a Page Header ... 20
I.2.3 Setting Column Alignment .. 21

I.2.4 Defining a Value Break .. 21

I.3. Date and Time References .. 22

I.3.1 Raw Date and Time Format ... 22
I.3.2 Date and Time Formatting Commands 22

I.4. Sorting and Merging.. 23

I.4.1 The $SORT Command .. 23

I.4.2 Enabling Merging ... 25

I.5. Implementing Mark as OK in Error Checking Scripts 28

I.5.1 How the Mark as OK Function Works 28

I.5.2 Error Bit Functions ... 28
I.5.3 How the Mark as OK Value is Stored 29

I.6. Reporting Power and Ground Nets 30

I.6.1 Specifying Signal Sources ... 30
I.6.2 Creating Design-Specific Signal Source Fields 30

I.7. Script Hierarchy Issues ... 32

I.7.1 Types of Hierarchical Netlists ... 32
I.7.2 The $HIERARCHY Command ... 32
I.7.3 Restricting Reporting of Internal Circuits 33
I.7.4 Listing Format for Internal Circuits 33
I.7.5 Depth Ordering in Pure Netlists ... 34
I.7.6 Instance vs. Definition vs. Hierarchical Names 35
I.7.7 Power and Ground Connections in Hierarchy 35

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 4/155

I.8. File Input and Output .. 37

I.8.1 File Names and Paths .. 37
I.8.2 Types of Output ... 38
I.8.3 Text File Input .. 39

I.9. Regular Expressions ... 39

I.9.1 The $REGEXP Command ... 40
I.9.2 Regular Expression Syntax .. 40

I.9.3 Match Variables ... 41
I.9.4 Back-references Within an Expression 41
I.9.5 Match Variable References Outside an Expression 42
I.9.6 Differences from Unix Regular Expressions 42
I.9.7 Regular Expression Examples ... 42

I.10. Script Examples ... 44

I.10.1 EMTP Netlist.rfm .. 44

II. Part II – Script Keyword Reference 51

1 $ALERT1/$ALERT2 ... 53

2 $ALIGNCOLSON/$ALIGNCOLSOFF 54

3 $AND .. 54

4 $ASSIGNINSTNAMES .. 54

5 $ASSIGNNAMES .. 55

6 $AUTONUMBER .. 56

7 $BLANKREPLACE ... 56

8 $BREAK ... 57

9 $BUSCLOSE .. 59

10 $BUSNAME .. 59

11 $BUSNAMEON/$BUSNAMEOFF 60

12 $BUSPINCLOSE .. 60

13 $BUSPINNAME .. 61

14 $CALLTOOL ... 61

15 $CHANGECOUNT .. 62

16 $CHARMAP .. 62

17 $CHECK ... 63

18 $CHECKSUM.. 64

19 $CHILDEMTPPHASE ... 64

20 $CHILDSIGNAME ... 65

21 $CIRCUITNAME ... 65

22 $CLEARERRORBIT ... 66

23 $CLEARERRORS ... 66

24 $CLOSECIRCUIT/$CLOSEDESIGN 67

25 $CLOSEREPORT ... 67

26 $CLOSETRANSCRIPT ... 67

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 5/155

27 $COL .. 68

28 $COMBDEVSON/$COMBDEVSOFF 69

29 $COMBPINSON/$COMBPINSOFF............................... 69

30 $COMBSIGSON/$COMBSIGSOFF 70

31 $CONTAINS ... 70

32 $CONTEND .. 70

33 $CONTSTART .. 71

34 $COUNT ... 71

35 $COUNTINST ... 72

36 $COUNTVALUES ... 72

37 $CREATEFOLDER/$CREATEDIRECTORY 73

38 $CREATEREPORT ... 74

39 $CREATETRANSCRIPT ... 75

40 $DATE .. 75

41 $DATECREATED/$DATEMODIFIED 76

42 $DEFINEATTR .. 76

43 $DEFINEBLOCK .. 78

44 $DEFINECIRCUIT ... 79

45 $DESIGNNAME .. 79

46 $DESIGNPATH ... 80

47 $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE 81

48 $DEVCOUNT .. 82

49 $DEVICES .. 84

50 $DEVINSTNAME .. 86

51 $DEVLOC ... 86

52 $DEVNAME .. 86

53 $DEVPINFORMAT .. 87

54 $DEVPINSEQUENCE ... 88

55 $DEVSEQ ... 89

56 $DEVTOKEN .. 89

57 $DIRECTORY ... 89

58 $DIV .. 90

59 $DWVERSION .. 90

60 $ELSE ... 90

61 $EMTPPHASE .. 91

62 $END .. 91

63 $EQ ... 91

64 $ERRORBITOFF .. 91

65 $ERRORBITON .. 92

66 $EVAL... 92

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 6/155

67 $FILEEXISTS .. 93

68 $FILENAME .. 93

69 $FIND .. 94

70 $FOLDER ... 96

71 $FULLPATH ... 96

72 $GE ... 97

73 $GRID ... 97

74 $GT ... 97

75 $HEADER ... 98

76 $HEX ... 98

77 $HIERARCHY ... 98

78 $HIERNAMESEPARATOR ... 99

79 $IF ... 100

80 $INCLUDE .. 101

81 $INCLUDEPORTSON/$INCLUDEPORTSOFF 103

82 $INLINE .. 104

83 $INTERNAL .. 105

84 $ISPORT ... 105

85 $ISUNCONNPIN ... 106

86 $ITEMSEPARATOR ... 106

87 $LE ... 106

88 $LINESUSED .. 107

89 $LINEWIDTH .. 107

90 $LOWERCASE ... 108

91 $LT .. 108

92 $MAP .. 109

93 $MAXITEMSPERLINE .. 110

94 $MERGE ... 111

95 $MINUS ... 112

96 $MULT .. 112

97 $NE ... 112

98 $NEWLINE .. 113

99 $NEWPAGE .. 113

100 $NONBLANK .. 114

101 $NOT .. 114

102 $NOTES .. 115

103 $NULL... 115

104 $NUMINPS .. 115

105 $NUMOUTS .. 116

106 $NUMPINS .. 116

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 7/155

107 $NUMEMTPPINS .. 116

108 $ONEPINSON/ONEPINSOFF 117

109 $OR ... 117

110 $PAGE .. 117

111 $PAGELENGTH ... 118

112 $PARENTPIN.. 118

113 $PINDIR .. 118

114 $PINNAME .. 119

115 $PINNUM .. 120

116 $PINS .. 120

117 $PINSEQ ... 121

118 $PINSIGSOURCE ... 122

119 $PINTYPE ... 123

120 $PINTYPEFORMAT .. 123

121 $PLUS... 124

122 $PORTNAME .. 125

123 $PRIMNAME ... 125

124 $PROGPATH .. 126

125 $PROGRESS .. 126

126 $REGEXP ... 128

127 $REPLICATE .. 128

128 $REPORTON/$REPORTOFF 129

129 $REPORTPAGE ... 129

130 $SAMEPINCOUNT ... 130

131 $SCRIPTPATH ... 130

132 $SELECT .. 131

133 $SELECTED ... 131

134 $SETATTR .. 131

135 $SETERRORBIT ... 132

136 $SETSIGWIDTH ... 133

137 $SETVAR .. 133

138 $SIGCOUNT ... 134

139 $SIGHIERNAME ... 135

140 $SIGINSTNAME ... 135

141 $SIGLOC .. 136

142 $SIGNALS .. 136

143 $SIGNAME ... 138

144 $SIGPINFORMAT ... 139

145 $SIGSEQ .. 139

146 $SIGSOURCE ... 140

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 8/155

147 $SIGTOKEN ... 141

148 $SINGLE ... 142

149 $SORT .. 142

150 $SPACE .. 144

151 $SYSPIN ... 145

152 $SYSTEMOPEN ... 145

153 $TAB ... 146

154 $TABFIELDSON/$TABFIELDSOFF 146

155 $TABLE .. 147

156 $TEMPPATH .. 148

157 $TEXTLINE ... 149

158 $TIME ... 149

159 $TIMECREATED/$TIMEMODIFIED 151

160 $TYPENAME .. 151

161 $UNCONNPINSOFF/$UNCONNPINSON 152

162 $UNNAMEDDEVS .. 152

163 $UNNAMEDSIGS ... 152

164 $UNSELECTEDPINS .. 153

165 $UNUSEDUNITS .. 154

166 $UPPERCASE .. 154

167 $VERIFY ... 155

168 $WRITETRANSCRIPT .. 155

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 9/155

Part I – Script Language Reference

This manual provides an overview of the Export (Report) script language and then provides
reference information on specific Export tool features and applications. Part II – Script Keyword
Reference provides detailed information on individual commands. If you are new to writing
EMTPWorks scripts, you may wish to start by looking at the examples in “Script Examples” on
page 44.

Knowledge of the material in this chapter is not necessary in order to use builtin scripts provided
with EMTPWorks. It is for those users who would like to modify existing scripts and to create new
scripts for customization purposes.

In addition to the Export script language, EMTPWorks provides JavaScript based scripting.
Scripts created using the Export script language can be also called from JavaScript based scripts
using the “runExportToString” command documented in the EMTPWorks electronic manual.

I.1. Command Language Introduction

The script language implement by the Export tool was developed originally as a flexible way of
specifying Netlist formats; an alternative to the hard-coded Netlists that are provided by most
schematic packages. However, as enterprising users pushed the limits of the original language,
we added more features to support more complex report formats, error checking, back annotation
and other applications. The script language is still primarily oriented around the concept of
generating a text file from design data. However, the new regular expression and file I/O features
added in this version make many other applications possible.

I.1.1 Basic Script Structure

A script file is simply a text file containing any number of lines of text with optional commands and
comments embedded in them. The default mode of operation is to read the input (script) file one
line at a time, scanning for commands. If no commands are detected, the line is simply written
directly to the output file. In fact, the program will accept any text file as input. If it doesn’t
recognize any commands, the entire file will be written verbatim to the output without modification
(except, possibly, for a change in line terminators - more on this topic later).

When reading the script file, the program scans for any commands, variables or comments. If any
of them are found, new data may be generated and substituted at that location in the output, or
some other action may be taken.

COMMANDS – Commands start with the “$” symbol and are in upper case letters. Commands
are used to control the format of the report and perform various actions. Some of the commands
need arguments to set certain values (e.g. the number of characters on a line). Any arguments
are enclosed in parentheses following the command keyword.

See more information on command argument format in “Command Arguments” on page 15.

If the desired output file format requires that a word starting with a “$” be placed in the script, it is
best to precede the “$” with the escape character “\” (backslash) to ensure that it will not be
accidentally interpreted as a command.

Commands fall into the following general sub-groups.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 10/155

Definition commands are those which set parameters for how data is generated but do not
themselves generate any text in the output file. An example is the $SIGPINFORMAT command,
which specifies how pins will be displayed in a signal list.

Action commands cause some action to be taken but don’t generate any text data that ends up in
the output file. For example the $SORT command sorts a device or signal list.

Function commands perform arithmetic, logical and various conversion operations on data
supplied as arguments. For example $PLUS will add two numbers and return the result.

Listing commands are those which cause lists of items to be directed to the output file. For
example the $SIGNALS command, which generates a list of the signals in the circuit. All the
commands which follow a listing command on a line are item-specific, that is, their exact meaning
depends upon the type of item being listed.

Object data commands are those whose value derives from the circuit object being listed. These
commands can be context-sensitive and may not have meaning in all locations in a script. For
example, the $SIGNAME command can appear in a $SIGNALS listing and causes the name of
that signal to be substituted. The $SIGNAME keyword has no meaning standing alone in the
script.

System data commands cause a specific internal value to be directed to the output file, e.g. the
design file name or the system date.

ATTRIBUTE OR VARIABLE REFERENCES – References to script variables or device, pin,
signal or design attributes start with the “&” symbol. The reference will be replaced with the actual
value of the attribute or variable. More information on variables can be found under “Script
Variables” on page 17.

If the desired output file format requires that a “&” be placed in the script, it is best to precede the
“&” with the escape character “\” (backslash) to ensure that it will not be accidentally interpreted
as an attribute reference.

COMMENTS – Comments are text enclosed between left and right braces “{” and “}”. Comments
are intended for internal documentation of the command file. No characters between, including
the braces or a carriage return following the closing brace, will be transmitted to the report. If you
need to transmit the character “{” to the output file, you must precede it by the “escape” character
“\” (backslash) so that it will not be recognized as a comment.

All other text and special characters (e.g. tabs and form feeds) found in the command file are
considered to be raw text and are transmitted to the output file unmodified.

Any item starting with a $ or & but not recognized as a command or variable word will be
transmitted to the report file. No error messages are generated for incorrect keywords.

It is recommended that only normal ASCII characters be used in reports. Using special symbol
characters (e.g. using the Character Map tool in Windows) may result in difficulty transmitting the
files to other programs and some of the Report format options may not function correctly.

A number of standard script files for report generation and error checking are provided with
EMTPWorks and some of these are explained in detail in “Script Examples” on page 44. These
can be used as guides in creating your own scripts.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 11/155

I.1.2 EMTPWorks Object Types

For report generation purposes, an EMTPWorks circuit consists of two major types of objects:
devices and signals. The script tool has two general sets of options allowing information on each
of these types of objects to be extracted or written to a file in a variety of forms.

Devices

The device listing features are used to create component lists, bills of materials and types of
Netlists that are listed by device, such as a SPICE or EMTP format. For each device in a list, any
of the following data can be included:

Device Name—this is the name applied to the device instance, e.g. “U1”, “R23”, “J12”, etc.

Device Attributes—the contents of any device attribute fields can be included in a listing.

Device Token—the device token is an integer that is assigned automatically by EMTPWorks
when the device is first placed on the diagram and not changed as long as that device exists in
that circuit. This token number can be used by an external program to determine which devices
are new and which are old in a circuit, despite name or parameter changes.

Device Sequence Number—this is a temporary integer that is assigned by the Report tool as part
of its sorting process and may change during a report if multiple sorts are done. This can be used
in cases where external programs require objects to be sequentially numbered.

Device Type information—this refers to information retrieved from the library when the device was
created, such as the type name (e.g. “C grounded”), number and types of pins, etc.

Device Graphical Information—information about the device's page number, position and
orientation on the schematic is available to allow transfer of schematic data to other systems, or
to create reference listings.

Attached signals—a device listing can also contain a list of the signals attached to each pin of the
device. Each signal entry can reference any of the signal data described below. See
“$DEVPINFORMAT”.

Device listings are created using the $DEVICES command.

Signals

Signal listings are used primarily for creating Netlists for transfer to external simulators or PCB
(Printed Circuit Board) systems. The following information is available about each signal in the
circuit:

Signal Name—this is the name of the signal as it appears on the schematic, or is assigned
automatically by the report generator.

Signal Attributes—the contents of any signal attribute field can be included in a signal listing.

Signal Token—this is an integer that is assigned automatically by EMTPWorks when the signal is
first created and not changed as long as that signal exists in that circuit. Note however, that many
common editing operations result in signals being merged or broken apart, which will often result
in the signal token changing even though some of the connections in the old signal remain. This
token number can be used by an external program to determine which signals are new and which
are old in a circuit, despite name or parameter changes.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 12/155

Signal Sequence Number—this is a temporary integer that is assigned by the Report tool as part
of its sorting process and may change during a report if multiple sorts are done. This can be used
in cases where external programs require objects to be sequentially numbered.

Attached device pins—any signal list can contain a list of the device pins interconnected by this
signal. Pin format options allow almost any of the device parameters mentioned above to be
included in each pin entry. See “$SIGPINFORMAT”.

Signals listings are created using the $SIGNALS command described later in this chapter.

I.1.3 Definition Commands

Definition commands control the general format of the report, for example: te number of rows per
page, the number of columns per row and other report formatting options.

Each of these parameters is set by using specific command keywords, the most common of
which are summarized in the following table.

Complete descriptions of these commands is provided in “Part II – Script Keyword Reference” on
page 51.

$LINEWIDTH(n) This command specifies the maximum number of

characters that will be placed on a line before an
automatic carriage return is inserted.

$PAGELENGTH(n) Specifies the action to be taken when a page is full (i.e.
when the number of lines specified in $LINESUSED is
exceeded).

$LINESUSED(n) Specifies number of lines to use on each report page
before moving to the next page.

$MAXITEMSPERLINE(n) Restricts the number of entries placed on a line in

repeating structures such as a netlist.
$AUTONUMBER(number of pins) Any device with less than or equal to the number of pins

specified will have pin numbers automatically assigned if
none were present in the circuit file. This option is
intended to provide pin numbers for discrete
components in a circuit, since they do not normally have
pin numbers on a diagram. The default number is zero.

$DEVPINSEQUENCE &attrField Specifies that the order in which pins appear in a pin
listing is to be determined by an attribute specified in the
device. This is intended for generating report formats
such as SPICE, in which pin order is significant, when
some devices in a design may not have their pins
defined in the required order.

$COMBPINSON/$COMBPINSOFF When ON causes multiple pin connections on the same
device to be combined. Default is OFF.

$ALIGNCOLSON/$ALIGNCOLSOFF When ON causes extra blanks to be inserted between

netlist or component list entries to force column
alignment.

$SPACE(number) Sets the column spacing used when
$ALIGNCOLSON/$ALIGNCOLSOFF is set. Default is
16.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 13/155

$ITEMSEPARATOR(string) Specifies a string that will be inserted between
successive items in an item list.

$UNNAMEDDEVS(string) Specifies a string that will be output whenever a device
name is called for and the device in question is
unnamed.

$UNNAMEDSIGS(string) Specifies a string that will be output whenever a signal
name is called for and the signal in question is
unnamed. The default value is “unnamed”.

$ONEPINSON/ONEPINSOFF When ON suppresses the pin number from being
printed in netlist entries for devices with only one pin.
This will cause entries such as test points to appear as
TP1 instead of TP1-1. Default is OFF.

$CONTSTART(string) Specifies a string of characters that will be inserted at
the beginning of each line that is a continuation from a
previous line (i.e. whenever $MAXITEMSPERLINE or
$LINEWIDTH is exceeded while writing a list).

$CONTEND(string) Specifies a string of characters that will be inserted at
the end of each line that is being continued onto the
next line (i.e. whenever $MAXITEMSPERLINE or
$$LINEWIDTH is exceeded).

$BLANKREPLACE(string) Specifies a string of characters that will be substituted
for a blank in any device or signal name. This is done to
accommodate systems which cannot accept blanks in
names.

$UNCONNPINSOFF/$UNCONNPINSON When ON, allows device pins that have no signal lines
attached to them and are not connected to any other
signals by name to appear in the netlist, otherwise they
are suppressed. Default is ON.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 14/155

Command Language Concepts

This section provides information on a number of concepts that are important to the operation of
scripts.

I.1.4 Current Design or Current Object

A script can be invoked under many different circumstances in addition to the simple Export
command in the File menu. A script can sometimes be executed in response to an action on a
specific object, such as a device. Similarly, one part of a script may cause another part of a script
to be invoked to generate data for a specific object.

For these reasons, it is important to be aware of what the “current object” is at any point in a
script. In fact, normally there is a sort of hierarchy of objects that may be involved in evaluating a
given command. For example, suppose you are generating a listing for a pin in a netlist. The pin
is associated with a parent device and an attached signal, which are in turn associated with the
parent circuit, which is in turn contained in some design. Data from any of these objects can be
used in generating a pin listing.

It is important that a script not attempt to access data for a “smaller” object that the current one.
E.g. If the current object is a device, you cannot use the $PINNUM keyword because it requires
access to a specific pin. In general, a device has many pins and the Export tool cannot assume
that it knows which one you mean. On the other hand, if the current object is a pin, you can use
$DEVNAME to get the attached device’s name, because there is an unequivocal device
associated with a pin.

The following points summarize how the current object is determined.

If a script is executed by a user command from a menu, the current object at the start is the
current circuit (i.e. the topmost circuit window).

If a script is invoked as a result of some operation on an object (e.g. placing a device), then the
current object will be the one just edited (i.e. the device just placed).

Any part of a script that is executed as part of an iterating command (like $DEVICES) will have as
its current object the current one in the iterating sequence.

I.1.5 Data Types

The script language only really implements one type of data: the character string. The internal
representation of character strings limits their length to 32,767 characters. This does not limit the
total length of an output file, but no single line, variable value, or attribute value can exceed that
length. Any commands that require other types of data (e.g. numeric or Boolean) will convert the
arguments from the character string format to the required internal format, then convert the
results back to a character string again.

Integers

Some of the keywords expect values that would be considered to be an “integer” data type in a
regular programming language. For commands such as $PLUS, the arguments will be assumed
to be the string representation of decimal integers and will be converted to signed 32-bit internal
values for the operation. The result is then converted back to a decimal integer string.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 15/155

No errors are reported during this conversion process. Conversion of a string to an integer stops
as soon as any non-decimal character is encountered. Thus, an empty string, or any string
starting with a non-numeric character, will be treated as zero.

Booleans

Some of the commands operate on or return “Boolean” (i.e. TRUE or FALSE) values. Again, the
internal representation is a character string. For commands such as $IF that evaluate the “truth”
or “falseness” of the data, an argument will be taken as TRUE if it contains any non-zero-length
value. Note that the contents of the string are not examined, so even a blank character will count
as TRUE. An argument will count as FALSE only if it is zero length. (Note that there is a
$NONBLANK function which can be used if you want to count a “blank” string as FALSE.)

For commands that return a “boolean” value, such as $AND, TRUE is represented by a string
consisting of a single character “1”. FALSE is represented by an empty string.

I.1.6 Blocks

A number of script commands refer to a block. A block is simply a set of lines in the script file that
start with a $DEFINEBLOCK command and end with an $END. Once defined, a block is treated
internally as if it was a separate file. When the script is executed, everything between the
$DEFINEBLOCK and corresponding $END is skipped until some other part of the script makes
explicit reference to it.

Blocks have a number of uses.

They can be used as a kind of “subroutine” which can be invoked from elsewhere in the script
using the $INCLUDE command. This can be useful if several parts of a script need to make use
of the same sequence of lines.

They can be used simply to delimit a block of text to define a value mapping table for the
$TABLE, $MAP or $VERIFY commands.

They can be used to define a set of script lines to be executed under specific circumstances, e.g.
to define the format of an internal circuit in a hierarchical netlist, as in the $INTERNAL command.

The $DEFINEBLOCK command is an extension of the $DEFINECIRCUIT command used in
hierarchical report forms.

I.1.7 Command Arguments

Many $ commands can be followed by argument strings contained in parentheses. These
arguments can pass information used in performing the requested operation. In some cases the
arguments are optional and the command will perform a default function with no arguments. For
example, when the $DATE command is used without following argument in parentheses, it
returns a string containing the date of the report in a standard format. If you want to control the
format, you can add a string argument containing format control characters.

Argument Data Types

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 16/155

As discussed in “Data Types” on page 14, there is really only one kind of data in the Export tool,
the character string, but it may be interpreted in various ways by different commands. Various
kinds of arguments are used, depending on the command:

String —everything is a string.

Integer—this is the string representation of a decimal integer.

Boolean—this is a string in which any non-null value will be taken as TRUE and an empty string
is taken as FALSE.

Block—some commands refer to another block of text elsewhere in the command file. Such a
block starts with a $DEFINEBLOCK command (which specifies the name of the block) and ends
with an $END. The block can then be referred to by name by various commands. Blocks are used
to specify value mapping tables, sets of commands to execute under specific circumstances, and
other uses.

Argument Syntax

For any command that takes arguments, the argument list is enclosed in parentheses and the
individual arguments are separated by commas. Because the arguments are literal strings where
every character is potentially significant, several special cautions should be observed:
Leading and trailing white space is removed from argument strings. If you want to pass a leading
or trailing blank or tab in an argument string, or a single blank by itself, you must escape it with a
backslash. For example, the following sets the variable to a string consisting of one blank:

$SETVAR(Blank, \)

If you need to pass a comma or closing parenthesis in an argument string, these should also be
escaped, as in:

$TABLE(ValueList, \,, \))

Note that this is passing three arguments. The first is a block name, the second is a string
containing a comma and the third is a string containing a closing parenthesis.

I.1.8 Control and Escape Characters

Anywhere in a script file where literal text is allowed (i.e. anywhere not inside a $ command
structure or comment), the following two format options can be used to insert special characters
in the output stream:

Control characters (i.e. ASCII codes less than 20 hex) can be inserted in the file using the ^ (shift
6) character. The character following the ^ will be inserted in the file with 40 hex subtracted from
its ASCII code. This means that ^@ will generate a null (code 00) character, ^A will generate
code 01, ^M will generate 0D (carriage return), etc. Note that the letter following ^ must be upper
case.

Special characters that may have specific meanings in the report command language can be
included in the output using the \ escape character. For example, the brace character { is used to
open a comment block in the command language. To include this character in the output stream,
it should be preceded by the escape character, as in “\{“. In addition, the escape character can be

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 17/155

used to terminate keywords or attribute field names that might otherwise run into the following
literal text. For example:

&ExtraText\ENDMODULE;

In this case the \ is used to separate the field name “ExtraText” from the literal text
“ENDMODULE;”. Without the \ escape character, the command language interpreter would
consider the text ExtraTextENDMODULE to be an attribute field name.

I.1.9 Script Variables

A script can create, modify and refer to string variables. The following notes outline the rules for
string variables:

A variable is defined and set by the $SETVAR command.

A variable is referred to (i.e. its value is extracted) by using the variable name prefixed by an
ampersand “&”. Note that this is the same way that an attribute field in the design is referred to,
so it is the user’s responsibility to ensure that there is no accidental name overlap. If you create a
variable with the same name as an attribute field, the variable will take precedence. I.e. A
reference to &name will return the value of the variable.

A variable is “global” throughout the script. I.e. once a variable of a given name is set anywhere,
its value remains set and it can be referred to in any part of the script executed later.

Variable values disappear when the script finishes executing, i.e. if you run the same or another
script later, the same variable will not retain its old value.

Variable names can be 1 to 16 characters long and can consists of letters, numbers, dots “.”, and
underscores “_”. Variable names consisting entirely of decimal digits are reserved, as discussed
below.

The following simple example shows how a variable is set and referenced:

$SETVAR(MyVar, This stuff becomes the value)

The value of the variable is: &MyVar

Special Variables &1—&9

Variable names consisting entirely of decimal digits are reserved for use as regular expression
“match” variables. When a regular expression is executed, these are automatically set to the
values matched by parts of the expression. A complete description of this facility is given in the
section “Regular Expressions”.

Predefined Variables

You can predefine variables and set them a certain value by using the SCRIPTVAR keyword in
the .INI file described in “Using EMTP”. This can be useful to allow you to make a script that uses
variables for items that may change from user to user, such as directory pathnames. A path
variable can be defined once in a setup file and a setup of scripts can then refer to them. The
variable can then be changed by changing only one reference in the Setup file and all scripts will
then use the new value.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 18/155

Note that these variables are not “global” in that they are reset to their defined values at the
beginning of each of each script. You can modify them using the $SETVAR command, but they
do not retain the modified value when the same or any other script is executed. If this type of
behaviour is needed, it can be implemented by storing values in attribute fields associated with
the design.

I.1.10 Attribute Field References

The ability to easily extract the values of device, signal, pin or design attributes in a report is one
of the most important features of the script language. An attribute field is referred to (that is, its
value is extracted) simply by using the attribute field name prefixed by an ampersand “&”. For
example, the following single line script will list all the devices in a circuit, showing the name
followed by the contents of the Part and Value fields:

$DEVICES$DEVNAME &Part &Value

The object type that is being referred to by a given attribute reference depends on its position in
the file and on how the script was invoked. With the exception of pins (described in the next
section), an attribute reference always refers to the current object. In most circumstances, this
means that a field reference that appears in a $DEVICES line refers to a device attribute, a
reference that appears in a $SIGNALS line refers to a signal attribute and a reference that
appears in a top-level line (i.e. not in $DEVICES or $SIGNALS) refers to a design attribute.

See the rules for determining the current object in “Current Design or Current Object” on page 14.

I.1.11 Precedence of Field References in Pin Listings

Some ambiguity can arise in attribute references when the current object is a pin, that is, inside a
$PINS command. In order to allow reference to attributes belonging to the pin itself or the
associated device or signal, the Export tool searches for values in the following order:

If the named field has a non-null value in the current pin, it is used.

Otherwise, if the field has a non-null value in the device associated with the current pin, it is used.

Otherwise, if the field has a non-null value in the signal associated with the current pin, it is used.

This allows you to specify a default value for an attribute in a device or signal and then override it
for selected pins. For example, the following script refers to an attribute field “ConnType” that has
been defined for both pins and devices:

$DEVPINFORMAT($PINNAME=&ConnType)

$DEVICES$DEVNAME $PINS

If the field ConnType has a value of “Normal” in the device, a value of “Special” in the third pin
and a null value in all other pins, you will see a listing like the following:

DEV1 PIN1=Normal PIN2=Normal PIN3=Special PIN4=Normal

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 19/155

I.1.12 Attribute vs. Variable References

Note that attributes are extracted the same way as script variables, so it is the user’s
responsibility to ensure that there is no accidental name overlap. If you create a variable with the
same name as an attribute field, the variable will take precedence. That is, a reference to &name
will return the value of the variable.

When the script language parser is scanning for commands, it takes any contiguous group of
identifier characters as a single identifier. This can be a problem if you wish to append some fixed
text to the extracted value from a field. For example, if you wished to append “_000” to every part
number (from a field called PartNum) in a bill of materials, it might be tempting to put this in a
script:

&PartNum_000

However, the script language will interpret this as a reference to a field called PartNum_000,
since all these characters are valid in an identifier. The solution is to insert an escape character
after the identifier to clearly delimit it, as in:

&PartNum_000

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 20/155

I.2. Controlling Report Page Layout

A number of script keywords and features are designed to assist in creating neat, human-
readable reports. This section will cover the setting of page height and width, page and value
breaks and column alignment.

Specific details on each of the keywords used here are provided in “Part II – Script Keyword
Reference” on page 51.

I.2.1 Setting Page Height and Width

Three keywords control the number of lines of text output on each page and the numbers of
characters on each line: $LINEWIDTH, $LINESUSED and $PAGELENGTH.

The Export tool is generating a pure text file and has no direct control over the fonts, tab settings,
margins and other page layout parameters used when printing the report output. It is the user’s
responsibility to understand the relationship between these settings and the actual line and
character counts used in generating the reports.

A typical usage of these commands would appear as:

$LINEWIDTH(60)

$LINESUSED(56)

$PAGELENGTH(66)

This indicates to the program that the maximum number of characters to be output on a line is 60
and the maximum numbers of lines of text on a page is to be 56. Note that the Export tool does
not break individual text items on output. The line width is only used to decide whether or not to
put out the next item generated by a repeating data command. If the fixed content of a line (i.e.
outside of repeating data items) is greater than the specified width, it will be output regardless.

The $PAGELENGTH command indicates the total number of lines on a page, including the
$LINESUSED, the page header and any blank lines generated to fill out the page. In this
example, the total page length is 66 lines. If no header has been specified, once the 56 lines
specified by $LINESUSED have been generated, the program will generate 10 empty lines to
meet the specified total. Obviously, the number of lines that will fit on a page depend on the font
and line spacing settings. It may be necessary to experiment to choose an appropriate
$PAGELENGTH setting for your output medium.

A special $PAGELENGTH value of zero can be used to indicate that an ASCII form feed
character should be output to indicate a page eject. Many word processing packages accept this
character as a page break.

I.2.2 Defining a Page Header

Any block of text can be defined as a page header to be inserted at the top of each generated
page. This text is defined in a section that starts with a $HEADER keyword and ends with an
$END keyword. The contents of this section is passed to the output file immediately to create the
header for the first page, then each time a page feed occurs.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 21/155

The header section is scanned for any commands or variables to substitute before it is output.
Any command keywords that are shown in the keyword reference as valid in “Script” or “Script -
Design” can be used in the header section. These allow you to insert the page number ($PAGE),
date ($DATE/$TIME), design name ($DESIGNNAME/$FILENAME), contents of design attributes
(&field) and other values in the header section.

Here is a simple example of a page header specification:

$HEADER

XYZ Industries of Smithville, Inc.

Bill of Materials Report

File: $FILENAME Date: $DATE

$END

I.2.3 Setting Column Alignment

Since the Export tool is generating a text file and does not print directly, the actual column
alignment that is obtained on output depends on the mechanism used to print the final report.
There are two general ways of ensuring alignment of columns of text in reports generated by the
Export tool:

You can use the $COL command for fixed items or the $ALIGNCOLSON/$ALIGNCOLSOFF
command for repeating items. This inserts extra blank characters in the output to ensure column
alignment. This only provides correct alignment on output when used with a fixed-space font such
as Courier.

You can insert tab characters using the $TAB and $ITEMSEPARATOR commands and then set
the tab spacing as desired in the word processor you use to print the results.

I.2.4 Defining a Value Break

The Export tool allows you to define a block of text to be output each time a computed value
changes while generating a sorted $DEVICES or $SIGNALS listing. This allows you to insert a
new heading or simply a blank line for extra readability between sections of a report. For a
complete description of this feature, see command $BREAK.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 22/155

I.3. Date and Time References

The script language provides a method for displaying and manipulating date and time values in a
variety of formats. In addition to the current date and time provided by the operating system, date
and time values are used in a number EMTPWorks operations, including:

The created and last modified dates of the current design file are available for use in reports.
Note that “last modified” refers to the disk file associated with the design, not the design itself.
Schematic editing operations do not change this value. For designs that have not yet been saved
to a file, these will be the date the file was created.

The last modified date of the source device library is stored in a device attribute called LibDate
when a device is placed in a design. This can be used later to determine if the design is up to
date with respect to the symbol library.

The last modified date of the external circuit file is stored in a device attribute ExtCctDate when
the external circuit is attached as a sub-circuit.

When a device is placed in a schematic, the current time is stored in the DateStamp.Dev field of
the device. This can be used in back- and forward-annotation processes that need to uniquely
identify devices even if the name has been changed.

See more information on date stamps in the chapter entitled “Device Naming and Packaging” in
the EMTPWorks User’s Guide.

I.3.1 Raw Date and Time Format

In EMTPWorks date can be stored automatically in an attribute field. This is an integer value that
represents the number of seconds since January 1, 1970. When this value is stored in an
attribute, it is converted to an unsigned decimal character string. The $DATE and $TIME
commands provide formatting operations to convert these values to human-readable form.

I.3.2 Date and Time Formatting Commands

The $DATE and $TIME commands can be used in a number of different forms to display the
current system time or any stored time value used in EMTPWorks time-stamping functions. The
$DATE and $TIME commands are described in detail in “Part II – Script Keyword Reference” on
page 51.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 23/155

I.4. Sorting and Merging

The script language provides the ability to sort device and signal listings on any data field. In
addition to the obvious application of producing sorted listings for improved readability, sorting
provides the basis for these additional functions:

A merging function allows all devices or signals with the same sort value to be combined into a
single line in the output. This can be used, for example, to create a “bill or materials” style listing
in which a single line is devoted to one part number and lists all instances of that part number.
This is described in more detail in “Enabling Merging” on page 25.

A value break function, $BREAK, allows the insertion of a header or page break when some field
or computed value changes.

I.4.1 The $SORT Command

The $SORT command provides the ability to sort device and signal listings on any data field.
Items with the same value in any field can be optionally merged into a single line. This allows
listings to be organized to suit various applications, for example:

Device or signal lists can be sorted by name to enhance readability.

Device lists can be sorted by type so that each line lists one device type with all information
common to that type and a list of instances of the type.

A device list can be sorted by page number to show the devices used on each page.

Signals can be sorted by an attribute field, for example to give priority to certain nets so they are
listed first for autorouting purposes.

Devices can be sorted by any attribute field, for example by component value, stock number,
cost, etc.

The $SORT command has the following form:

$SORT objectType field1 field2 ...

where:
objectType must be either “$DEVICES” or “$SIGNALS”.
field1, field2, etc. are identifiers indicating which fields to sort on. The list is sorted first on the first
field. If any items in the list have identical values in that field, then the groups of like-valued items
are sorted on the next specified field, etc.

Once a sort has been done, it remains in effect for all subsequent listings on that object type until
the next $SORT or $FIND command. Each $SORT clears the previous $SORT. Sorting can be in
ascending or descending order, as described below.

The following field specifications are valid in all $SORT commands:

$ASCENDING This specifies that all following fields specified should be

sorted in ascending order. This is the default direction, so
ASCENDING will normally only be required after a

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 24/155

DESCENDING to reset the sort direction for subsequent
fields on the same line.

$DESCENDING This specifies that all following fields will be used to sort in
descending order.

If objectType is $DEVICES, the following field specifications can be used:

$DEVNAME Sort on the device name. If no name exists in the circuit, and

no name has been assigned using $ASSIGNNAMES, then
the item will be placed at the end of the list. If the device
name contains a numeric portion (e.g. U12), then the numeric
part of the name is sorted on its integer value, instead of its
character value. E.g. the name U12 will appear before U110,
instead of after, as it would in a purely lexical sort.

$DEVHIERNAME Sort on the device hierarchical name, i.e. a name generated
by prefixing the device name with the names of all parent
devices in the hierarchy. This is normally only used in
flattened netlists.

$DEVINSTNAME Sort on the contents of the InstName field. This is normally
only used in flattened netlists.

$POSX Sort on the horizontal position of the top left corner of the
device symbol on the diagram.

$POSY Sort on the vertical position of the top left corner of the device
symbol on the diagram.

$TYPENAME Sort on the device's type name, i.e. as it appears in the Parts
palette.

$ORIENT Sort on the device orientation.
$PAGE Sort on the page number that the device appears on.
$NUMPINS Sort on the number of device pins.
$NUMEMTPPINS Sort on the real number of device pins
$DEPTH Sort on the contents of the Depth attribute field. NOTE: This

field will only be valid if the mode is enabled.
&attrField Sort on the contents of the attribute field named attrField in

each device. If that field is empty or does not exist in a given
device, then that device will be placed at the end of the list.

If objectType is $SIGNALS, the following field specifications can be used:

$SIGNAME Sort on the signal name. If no name exists in the circuit, and

no name has been assigned using ASSIGNNAMES, then the
name “unnamed” will be assumed. See the note under
“DEVNAME” above regarding sorting numeric portions of the
name.

$SIGHIERNAME Sort on the signal hierarchical name, i.e. the name of the
signal prefixed by the names of all parent devices in the
hierarchy. This is normally only used in flattened netlists.

$NUMPINS Sort on the number of device pins attached to this signal.
$SIGSOURCE Sort on the order of appearance of this signal in a

SIGSOURCE command. If the signal does not appear in a
SIGSOURCE command (as most won't), it will appear after
the SIGSOURCE signals. This is used to place all power and
ground nets at the front of a netlist.

&attrField Sort on the contents of the attribute field named “attrField” in
each signal. If that field is empty or does not exist in a given
signal, then that signal will be placed at the end of the list.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 25/155

See the examples in “Script Examples” on page 44 for more information on how to use the sorting
capability.

I.4.2 Enabling Merging

The combination options $COMBSIGSON/$COMBSIGSOFF and
$COMBDEVSON/$COMBDEVSOFF instruct the Export tool to combine items with the same sort
value into a single line in the listing. This can be used to produce a variety of useful listing
formats, for example listings of all devices having a certain type name.

The “COMB” options will have no effect if no sort has been specified since they only operate on
sorted values.

$COMBSIGSON/$COMBSIGSOFF When ON causes signals with the same sort value to be

combined into a single net in the netlist. Default is OFF.

$COMBSIGSON/$COMBSIGSOFF should not be used in most normal netlisting applications.
Any like-named signals have already been logically connected by EMTPWorks and will be listed
in one entry even if COMBSIGS is OFF. COMBSIGSON will have the additional effect of merging
like-named signals, even if they appeared on different pages of the schematic.

$COMBDEVSON/$COMBDEVSOFF When ON causes devices with the same sort value to be

merged into a single entry in the component list. Default is
OFF.

Display of Multiple Values in Merged Lines

Whenever merging is enabled (that is, $COMBSIGSON/$COMBSIGSOFF or
$COMBDEVSON/$COMBDEVSOFF is active), a single line in a listing can represent an arbitrary
number of circuit objects. All objects on that line have the same sort value but will generally differ
in other values.

For example, this simple script:

$SORT $DEVICES &Part

$COMBDEVSON

$DEVICES&Part $DEVNAME

It will produce a sorted list with one line per Part value, sorted by Part. When the Export tool
encounters $DEVNAME it actually puts out the names of all the devices merged on that line, so a
typical line will look like:

YgDp30 YgD_1 YgD_2 YgD_3

Items with multiple values will always be sorted by value and are always merged, i.e. only unique
values are displayed. In the example above, if multiple device symbols have the same name, that
name will only appear once in the list.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 26/155

Disabling Multiple Value Display

There may be cases where the display of multiple values on merged lines would not be desirable.
An example is the use of date stamps in PCB netlist output. If multiple gate symbols are merged
into a single package in the netlist, the date stamp value will be different on each of the device
symbols being combined into one package. However, the PCB package only wants to see a
single value since it only considers it to be one object. There are two ways of creating a single
value for use in the report.

The $SINGLE keyword disables multiple value display for the next command that generates any
object-derived data. When this is used the value that will be displayed in the first one encountered
in the internal circuit structure. There are no guarantees that this value will be the first one in any
sort sequence.

You can use a function call to derive a value from the list of object values. There is a built-in
function that may be useful for this: $COUNT (a count of the number of items).

Multiple Value Items in Function Arguments

When a data item that represents multiple values is used as an argument to a function command,
the question arises of whether the value is expanded before or after the function is called. The
Export tool’s default behaviour is to expand multiple values after a function is evaluated. Put
another way, data items that are passed as arguments to a function are not expanded to multiple
values. It is assumed that the function will be called once for each object being merged and that
the data item in the argument will take on its appropriate value for that single object.

This default behaviour can be overridden using the $MERGE keyword, which can be thought of
as the opposite of $SINGLE. If $MERGE is placed before a data item, its value will be the
expanded value of all objects that it represents even if it is an argument to a function.

We will illustrate this by a simple example. Suppose we have a circuit with two devices having the
same value in the Part attribute, but different values, “1” and “2” respectively, in the Value
attribute. We then execute this script:

$SORT $DEVICES &Part

$COMBDEVSON

$SETVAR(Test1,)

$SETVAR(Test2,)

$DEVICES&Part $SETVAR(Test1, &Value) $SETVAR(Test2, $MERGE&Value)

The value of Test1 is &Test1

The value of Test2 is &Test2

This script will generate the following output:

The value of Test1 is 2

The value of Test2 is 1 2

In this case the first $SETVAR command is executed twice, once with Value equal to “1” and
once with Value equal to “2”. The second call overwrites the value of Test1 set by the first call.
Note that there is no guarantee of the order of execution, so the value output might be “1”.

The second $SETVAR has a $MERGE command, indicating that we want the &Value item to be
substituted with all the values of the merged objects, in this case “1 2”.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 27/155

The second $SETVAR is still executed twice, even though it produces that same value both
times. This could be overridden by placing a $SINGLE in front of $SETVAR. In this case, the
result would not be affected, but it would be a minor inefficiency.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 28/155

I.5. Implementing Mark as OK in Error Checking Scripts

A number of commands are provided to assist in creating a “Mark as OK” function in error
checking scripts. This is primarily intended for use with the ErrorScript tool (Find in the Drawing
menu), although it could be used elsewhere. The ErrorScript tool has a “Mark as OK” button
which the user clicks to indicate that the current object found by the error checking script should
be considered to be not in error and not be located again by future runs of the same error check.
It is the error checking script’s responsibility to implement this function and to provide the
necessary data to the ErrorScript tool.

I.5.1 How the Mark as OK Function Works

In order to allow a “Mark as OK” setting to be specific to a certain test, a value is stored in the
OKErrors attribute field which represents a bit set numbered from 0 to 31. In designing a set of
error checks for a design kit, a bit number is assigned to each error check. When it is scanning
circuit objects looking for errors, the script should check its assigned error bit. If the bit is on, then
this error check has been masked out for this object and the object should not be considered to
be in error.

In order to reduce duplicate usage of error bits, bit number 0 to 15 are reserved for use in scripts
provided with EMTPWorks. Users are encouraged to use bits 16 to 31 for their own scripts. Note
however that bits number 17, 18, 19, 21, 22, 23 and 25 are presently already used by the script
located in file EMTP Error Check.rfm.

I.5.2 Error Bit Functions

This table summarizes the functions available to operate on the contents of the OKErrors field:

$ERRORBITON(num) This returns a TRUE value if the given bit number is 1 in
OKErrors, that is, if the corresponding error check should be
skipped for this object.

$ERRORBITOFF(num) This returns a TRUE value if the given bit number is 0 in
OKErrors.

$SETERRORBIT(num) This sets the given bit number in OKErrors, i.e. marks this error
as OK.

$CLEARERRORBIT(num) This clears the given bit number in OKErrors.

$CLEARERRORS This sets the OKErrors field to a null value, i.e. re-enabling all
error checks for this object.

There is no absolute requirement that you use the OKErrors attribute field or any of the functions
described here in creating an error checking script. You are free to use any other attribute fields
or script functions in implementing error checks. However, unless there is a good reason for
doing otherwise, we suggest using these functions so that the user of your scripts sees a
consistent implementation.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 29/155

I.5.3 How the Mark as OK Value is Stored

The “Mark as OK” bits are stored as an unsigned 32-bit integer represented in hexadecimal form
in the OKErrors attribute field. This field is predefined as a secondary field for devices, pins and
signals in all designs created in EMTPWorks.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 30/155

I.6. Reporting Power and Ground Nets

The “signal source” facility in the Export tool allows you to name certain signals to be treated as
power and ground nets. This has the following two effects:

It allows you to create common connections in a circuit using attribute entries in devices. This can
be used to create power and ground entries in the Netlist without having to show all these
connections explicitly on the diagram.

It informs the Export tool that the given signals should be merged across hierarchy levels.

For an overview of the methods of creating power and ground connections, see “Using EMTP”.

I.6.1 Specifying Signal Sources

Any device attribute field may be specified as a signal source by the command:

$SIGSOURCE(signalName) &fieldName

signalName is the name of the signal to attach pins to in the netlist. fieldName is the name of the
attribute field to search for in each device to look for pin numbers to attach to the named signal. If
fieldName is omitted, the signal name is taken to be the name of the attribute field to search.

The named device attribute field is assumed to contain a list of pin numbers to attach to the
signal. This can consist of a single pin entry, such as “7”, or a list, such as “5,6,9,14”, separated
by commas.

In this version of EMTPWorks, pin numbers are limited to 4 characters. If you omit the comma in
a list like the one above, the entire text string will be taken as a single item and the Export tool will
report a string overflow error.

For example “Ground” connections can be created as follows.

Using the Attributes command on a selected device, create an entry such as “7” in the Ground
attribute for a device, in this case connecting pin 7 to the Ground net.

Place the command $SIGSOURCE(Ground) in the script file. This causes Export tool to search
all device attributes for fields named Ground and use the field value as a pin number.

There is no fixed limit to the number of SIGSOURCE entries that can be created.

The predefined fields Ground and Power are normally used for standard power and ground
connections. These pin connections are prespecified for all digital components in the standard
EMTPWorks libraries. Corresponding $SIGSOURCE statements are included, where appropriate,
in all standard netlisting scripts. You can create your own special-purpose power nets by using
the $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE facility described in the following section.

I.6.2 Creating Design-Specific Signal Source Fields

Including a $SIGSOURCE command in a script creates a signal source that will be searched for
all designs that use that script for output. In some cases it is desirable to specify a special power

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 31/155

or ground net that applies only to a single design. For this purpose, most of the standard report
scripts included with EMTPWorks have a line like this:

$DESIGNSIGSOURCE(SigSources)

This command provides a more indirect and flexible way of specifying signal source fields
independently for a single design.

The SigSources design attribute field is predefined in all designs for this purpose.

This command causes the Export tool to take the following steps:

The attribute field named as an argument of the
$DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE command is taken to be a design attribute
field. This field is retrieved and scanned for a list of signal source names like this example:

Minus5V, Plus3V

Each of the items in this list is treated as a signal source. That is the named field is checked in
each device for a list of pin numbers and any found are added to a net with the same name.

In this case, placing “Minus5V, Plus3V” in the design field SigSources is equivalent to placing the
following lines in the script, for this design only:

$SIGSOURCE(Minus5V)

$SIGSOURCE(Plus3V)

The $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE mechanism does not provide any way of
specifying a field name that is different from the target net name, as can be done with the
$SIGSOURCE command.

To summarize, here are the steps you need to take to use this feature:

Check that a $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE command exists in the netlist
script you are using, or add one. The SigSources design attribute field is predefined for this
purpose. If you are using a design kit provided with EMTPWorks, check the ReadMe file that
came with it for more information.

Place a list of the special signal source fields that you will need in the design attribute field
specified above. These items must be separated by commas and each must be a valid attribute
field name.

Place the desired pin connections for each of these nets in the corresponding attribute field in
each device in your design.

When you produce a Netlist from this design, you should see new nets with the names specified
in the design attribute and with the pin connections derived from the values in each device.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 32/155

I.7. Script Hierarchy Issues

The Export tool has the ability to produce a hierarchical Netlist of a circuit, i.e. a list including the
internals of hierarchical blocks. The listing can proceed into nested blocks to any desired depth to
provide the required detail. For the following discussions, this facility is referred to as “hierarchical
netlisting”. Without hierarchical netlisting enabled, only objects in the current circuit level (i.e. that
displayed in the topmost window) will appear in a Netlist.

I.7.1 Types of Hierarchical Netlists

Two types of Netlists can be produced from a hierarchical design:

Flattened Netlist: A flattened Netlist is generated by substituting each hierarchical block symbol
with its internal circuit. All information about the hierarchical blocks themselves, nesting levels,
etc. is lost. The resulting output appears to have been generated from a flat design. This format is
most commonly used for printed circuit board Netlists.

Pure Hierarchical Netlist: A Pure Hierarchical Netlist consists of a Netlist of the master circuit for
the design, and then separate Netlists of the internals of each type of hierarchical block used.
Each internal circuit can be written into a separate file, or all Netlists may be concatenated in a
single file in either top-down or bottom-up order. This format is commonly used for simulators
(e.g. SPICE or EMTP) and FPGA tools.

Since a Pure Hierarchical Netlist contains only a single copy of the definition of each internal
circuit, it cannot contain any instance data.

I.7.2 The $HIERARCHY Command

The $HIERARCHY command in a script file sets the type of Netlist output to be generated.

The hierarchy mode of the Netlist does not have to match that of the design. For example, you
can generate a PURE Netlist from a PHYSICAL mode design. The following table indicates which
design modes are appropriate for the various Netlist types.

Report Mode Design Mode Description
$CIRCUIT FLAT, PHYSICAL,

PURE
Generate a normal Netlist for the single
current circuit only. This is the default
mode.

$TOPCIRCUIT FLAT, PHYSICAL,
PURE

Generate a normal Netlist for the
master circuit of the current design
only.

$FLAT FLAT, PHYSICAL Generate a flattened Netlist for the
entire design.

$FLATDOWN FLAT, PHYSICAL Generate a flattened Netlist for the
current circuit and all nested blocks.

$PURE FLAT, PHYSICAL,
PURE

Generate a pure Netlist for the entire
design. In particular, this causes a
$DEVICES listing to list each unique
type of device only once.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 33/155

$PUREDOWN FLAT, PHYSICAL,
PURE

Generate a pure Netlist for the current
circuit and all nested blocks.

Note these points on hierarchical format:

• A flattened Netlist will normally make reference to instance attributes in the design.
Instance attributes are not normally used in a Flat mode design, so this combination is
not recommended.

• PURE netlist mode can be used with a FLAT design but no internal circuits will be listed.

• In PURE Netlist mode, the internal circuit for each block type is listed only once,
regardless of how many times it is used in the design. Therefore, instance data is not
normally included in a PURE Netlist.

• All hierarchical Netlists are affected by the Report Options settings that restrict entry into
sub-circuits. These are described below.

I.7.3 Restricting Reporting of Internal Circuits

The listing of internal circuits of individual blocks can be controlled using the Report Options. The
option “Report this device” will cause this device or block to appear in the Netlist as if it has no
internal circuit. The option “Report subcircuit” will cause the internal circuit of this device to
appear in the Netlist. I.e. in a PURE Netlist, the internal circuit will be defined, in a FLATTENED
Netlist, the internal circuit will be substituted and this device will not appear at all.

The “restriction” status is stored in the Restrict device attribute field.

I.7.4 Listing Format for Internal Circuits

For flattened Netlists, the output format is usually the same as would be generated from a flat
design, except that hierarchical or instance names (see next section) are sometimes substituted
for definition names.

For Pure Hierarchical Netlists, formatting is more complex since the format of the master circuit is
usually different from the internal circuit definitions. For this reason, the Report tool treats these
two types of circuits as two separate format definitions.

The general outline of a Pure Hierarchical Netlist format is as follows:

{

 $PURE mode lists each device type once

 so the next $DEVICES listing will only

 list unique type definitions.

}

$HIERARCHY $PURE

{

 The DEFINECIRCUIT section gives the listing

 format for the internal circuits

}

$DEFINECIRCUIT

{ Listing commands for internal circuit }

$END

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 34/155

{

 Use FIND command to locate all devices that

 have a non-empty Depth attribute, i.e.

 they have an internal circuit. The Depth

 attribute field contains an integer indicating

 the number of circuit levels below this device

}

$FIND $DEVICES &Depth

{

 Sort by the Depth field to list from the

 bottom up. The $DESCENDING option could

 be used to sort from the top down.

}

$SORT $DEVICES &Depth

{

 The following $DEVICES listing will list

 each unique type of device only once because

 we are in $PURE mode. $INTERNAL causes the

 internal circuit to be output for each device

 in the format defined in $DEFINECIRCUIT.

 Other text or commands could be included in

 the $DEVICES line to output a circuit block

 header or terminator.

}

$DEVICES$INTERNAL

{

 Now switch to TOPCIRCUIT mode and do a

 separate listing for the master circuit

}

$HIERARCHY $TOPCIRCUIT

{ Commands to list master circuit }

I.7.5 Depth Ordering in Pure Netlists

The Depth attribute field is used to select device types that have internal circuits and to sort by
depth for top-down or bottom-up listings.

The Depth field is not maintained by the Schematic module during normal editing operations. The
Depth value is calculated by the Report tool only when a PURE netlist is generated.

The Depth field will be empty for devices with no internal circuit. For devices with an accessible
internal circuit, the Depth field will contain an integer indicating the number circuit levels below the
device. E.g. if the device's internal circuit contains only bottom-level devices, the value will be 1.

The Depth field can therefore be used with the $FIND command to perform separate listing
operations on devices with or without internal circuits. For example:

$FIND $DEVICES &Depth

This will select all devices having an internal circuit, whereas:

$FIND $DEVICES $NOT &Depth

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 35/155

This will select devices having no internal circuit. Similarly, the $SORT command can be used to
determine whether internal circuits are defined from the lowest level up or vice-versa.

$SORT $DEVICES &Depth

This will cause the lowest level devices to be listed first, i.e. bottom up. This is the preferred order
for most formats because it ensures that each type of internal circuit is defined before it is
referred to in any other circuit.

I.7.6 Instance vs. Definition vs. Hierarchical Names

Devices and signals have three different types of “names” that are significant in producing Netlists
from hierarchical designs. These are summarized in the following table.

Report Keyword Attribute Field Description
$DEVNAME/ $SIGNAME Name Normally used in Flat mode designs.

Not guaranteed to be unique across a
hierarchical design.

$DEVINSTNAME/
$SIGINSTNAME

InstName Not normally used in Flat mode
designs. InstName is used for package
assignment in Physical mode designs.
Should be unique across design.

$DEVHIERNAME/
$SIGHIERNAME

Temporary generated by
program

A generated name consisting of the
device or signal Name field prefixed by
the names of all containing hierarchical
blocks.

Note these rules when selecting which type of name to use in a report format:

• $DEVNAME/$SIGNAME should not be used in a flattened Netlist unless you intend to
manually guarantee that it is unique across the entire design and each type of
hierarchical block is only used once.

• In Physical mode designs, $DEVINSTNAME should be used as the device “name” in
Netlists intended for PCB-layout use, since it normally contains the package assignment.

• In flattened Netlists, $SIGHIERNAME should be used for the signal “name” since it
ensures a unique name that is easily located in the schematic. $SIGINSTNAME can be
used but must be assigned manually to each signal.

I.7.7 Power and Ground Connections in Hierarchy

Power and ground symbols (i.e. Signal Connector devices) do not make an immediate logical
connection across hierarchy levels. For this reason, power and ground connections in different
circuit levels will be considered separate nets in a flattened netlist, unless you do one of the
following:

• Specify the name of each power and ground net in a $SIGSOURCE statement in the
script. This instructs the Report tool to look for those named nets and integrate them into
a single entity.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 36/155

• Create individual ports for the power and ground connections on each hierarchical block
symbol and treat them as regular nets.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 37/155

I.8. File Input and Output

The Export tool is essentially a text file processing module, so issues of directories, file naming,
line terminators, etc. are important considerations in writing scripts. This section discusses some
of these issues.

I.8.1 File Names and Paths

Whenever a file name is specified in a script, the issue of which directory the file is going to be
found in must be considered. Generally, there are two different kinds of files dealt with by the
Export tool:

• Design-specific files: These include the design itself, Netlists or reports generated from it,
back-annotation files and possibly "include" files that need to be copied into output of
some kind. These files are modified as the design is created and edited by the user.

• System files: These include the scripts used for netlisting and report generation,
Prompter setup tables, etc. These files are normally fixed and may be shared by a
number of users.

This division of files raises the following issues:

• Most users will tend to keep these two sets of files in different areas. In fact, in network
systems or workgroups, the two sets of files might be on quite separate machines.

• When creating scripts and other system files, it is desirable to make them as portable as
possible, so that they don’t need to be modified to run on a variety of systems. For this
reason it is undesirable to include any absolute pathnames in a script.

In order to handle these situations, the Export tool keeps track of two directories at any one time:

• The "current directory" for design-specific files.

• The "root directory" for system files.

These are described in the following sections.

Current Directory

While a script is executing, there is always a "current directory", which is the place where output
files will be generated. When a script starts, the current directory will be the one containing the
design file associated with the current design. If the current design has not been saved, then the
current directory will be the location of the EMTPWorks program.

During the execution of a script, the current directory can be changed by several things:

Explicitly selecting a directory with the $FOLDER/$DIRECTORY command.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 38/155

• Creating a new directory with the $CREATEFOLDER/$CREATEDIRECTORY command.
This sets the current directory to be the new one.

• Opening a new design. This sets the current directory to be the new design’s directory.

Root Directory

The root directory is the starting point for locating system files such as scripts and Prompter
tables. For larger installations where the program and common files may be shared over a
network, EMTPWorks also permits multiple root directories. The following points should be noted
about root directories:

• If not otherwise specified in the Setup or .INI file, the root directory is the one containing
the EMTPWorks program.

• The root directory cannot be changed by any script or user commands. It is determined
by settings in the Setup or .INI file.

• Names of include files or script names are always given relative to the root directory. The
Export tool does not search recursively inside directories. Therefore, any script name
must be specified either with an absolute path name (i.e. starting with the disk name), or
must be relative to the root directory.

• If there are multiple root directories, the Export tool determines of the "current" directory
(described above) is in any of the specified root directories, then it searches first in that
one. The purpose of this is to allow users on network systems to have a directory on
their local disk which contains their designs and local scripts. If this directory is specified
as a root, it will be searched first, before looking in the program location.

When specifying file paths containing backslash characters, remember that the backslash
character is also the "escape" character for special symbols in scripts. For this reason, whenever
a path is included in text that is interpreted as part of a script, backslashes must be doubled, for
example "C:\\Scripts\\Report.rfm".

I.8.2 Types of Output

Output to File

The most common usage of the Export tool is to generate text reports, netlists, etc. For this
reason, the default behaviour is to write all text generated by a script to a text output file. If the
script does not explicitly create an output file, the user will be prompted to create one with a
standard "Save" box as soon as the scripted generates its first character of output. If the script
generates absolutely no output, then it will run without this prompt. This behaviour can be
changed by using the $REPORTON/$REPORTOFF, $CREATEREPORT and $CLOSEREPORT
commands, described below.

Note that output files can be "nested" to any desired depth. I.e. A script can perform multiple
$CREATEREPORT commands without intervening $CLOSEREPORT commands. Script output
is written to the file created by the most recent $CREATEREPORT until it is closed by a
$CLOSEREPORT. Output will then go to the next most-recently-created file, etc.

Output to Memory Buffer

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 39/155

The Export tool can also be called by other modules within EMTPWorks to perform various
operations. The calling module can specify that script output should be written to a memory
buffer for use by that module when the script is completed. In this case, the user will not be
prompted to create a file when output is generated. Note that the script can still explicitly create
an output file using $CREATEREPORT. This will be considered a nested output file, as
described above.

Transcript Output

The Export tool can support a secondary text output file which is open simultaneously with the
main output file. This is referred to as a "transcript file" and is intended as a method of creating
an error report or log file that allows the script user to trace errors that occurred during report
generation, changes implemented by the script, etc.

Many of the same formatting commands and information sources can be used in writing to the
transcript file. Text is written to the transcript file by means of the $WRITETRANSCRIPT
keyword. The argument to this command is evaluated and the resulting text is written to the
transcript file. Note that it is the callers responsibility to insert line terminators where desired
using the $NEWLINE keyword.

I.8.3 Text File Input

The Export tool has the ability to read line-oriented text files and extract arbitrary text data items.
This can be used compare a design to an external file or perform simple back annotation tasks.
The text file input capability is implemented as a special case of the $INCLUDE command with
the $EXECUTE option.

I.9. Regular Expressions

The Export tool allows you to use Unix-style regular expressions to check the format of character
strings and extract data fields from strings of a known format. Regular expressions make it
possible to perform the following kinds of operations:

• Check a data field (e.g. a device or signal name) for correct format. For example, you
can easily create a pattern that says "a letter followed 1 to 9 more letters, numbers or
underscores". If any items are found that don’t match the pattern, you can warn the user
of a possible error.

• Convert the format of a data item. For example, suppose you have a schematic that
uses bus names of the form "A[0:7]" and you want to create a Netlist for a system that
wants to receive a value that looks like "A<7..0>". You can create a regular expression
that will extract the parts of the original data item and use them as elements of a new
string.

• Extract data from an incoming text file. The Export tool has the ability to read a text file
one line at a time and execute a script for each line. You can create a regular expression
to match the expected contents of the line and extract data items. These can then be
used to set values in circuit objects to perform various kinds of back-annotation.

Regular expressions are invoked using the $REGEXP command.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 40/155

I.9.1 The $REGEXP Command

The $REGEXP function is the only way to invoke a regular expression. It takes the following
form:

$REGEXP(regularExpression, string)

The regularExpression item is a sequence of characters following the syntax described in the
next section. The string item is any character string, which can be a literal string, like "VALUE",
or a sequence of commands that generate a string value, such as "$DEVNAME-$PINNUM".

The $REGEXP function returns a "false" value (i.e. null string) if the regular expression does not
match the string, or a "true" value (i.e. "1") if it does.

The syntax of the function call places a restriction on the use of commas and closing parentheses
as literal characters in both the regular expression and the string. If either of these is required as
a literal character, they should be preceded by the escape (back-slash) character. This does not
apply to closing parentheses used for grouping within the regular expression itself. The parser
can detect this usage and will not interpret it as closing the $REGEXP argument list.

I.9.2 Regular Expression Syntax

A regular expression is simply a sequence of characters that will be compared to another
sequence of characters. For example, a string of letters or numbers like "Fred" will match only an
identical string of letters or numbers. A small set of punctuation characters have special meaning
and are referred to as metacharacters. The regular expression metacharacters are:

 \ ^ $. [] | () * + ?

When any of these items is encountered in an expression, they impart special meaning to one or
more of the characters that follow. These meanings are summarized in the following table:

Regular Expression Metacharacters

Format Meaning
. Matches any character except newline

[a-z0-9] Matches any single character of set.

[^a-z0-9] Matches any single character not in set (in this
context ^ means “not”).

\d Matches a digit; same as [0-9]

\D Matches a non-digit, same as [^0-9]

\w Matches an alphanumeric (word) character [a-
zA-Z0-9_]

\W Matches a non-word character [^a-zA-Z0-9_]

\s Matches a whitespace char (space, tab,
newline...)

\S Matches a non-whitespace character

\n Matches newline

\t Matches a tab

\nnn Matches an ASCII character of octal value nnn

\xnn Matches an ASCII character of hexadecimal
value nn

\CX Matches an ASCII control character

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 41/155

\metachar Matches the character itself, i.e. overrides
normal meaning of special characters. E.g. "["
introduces a set, but "\[" matches "["

(abc) Provides grouping and remembers the match
for later backreferences and match variables.
See below.

\n n is a decimal digit from 1 to 9. Matches
whatever the nth set of parentheses matched

x? Matches 0 or 1 x's, where x is any of above

x* Matches 0 or more x's

x+ Matches 1 or more x's

x{m,n} Matches at least m x's but no more than n

abc Matches all a, b, and c in order

fee|fie|foe Matches any of fee, fie, or foe

The increasing precedence of operators is alternation, concatenation and unary (*, + or ?). The
repetition characters (*, + and ?) all match as many characters as possible before proceeding to
the right. For example, in the expression:

.*.*

The first .* will always match the entire string and the second .* will match the empty string. This
can be particularly significant when using match variables as it will affect which portion of the
string gets assigned to which match variable.

I.9.3 Match Variables

A powerful feature of regular expressions is the ability to “remember” what string of characters a
specific part of the expression matched. Whenever you enclose part of a regular expression in
parentheses, you have implicitly created a match variable. Because the syntax of regular
expressions only allows one decimal character for a match variable name, there are exactly 9 of
them, named “1”, “2”, “3”, etc. As a regular expression matching operation proceeds, the string of
characters in the subject string that matched the first set of parentheses in the expression is
assigned to 1. Whatever matches the second set of parentheses is assigned to 2, etc. If
parentheses are nested, the inner set will be the higher number.

I.9.4 Back-references Within an Expression

You can refer back to a match variable within an expression using the format “\n”. This, in effect,
has the meaning “match the same stuff that was matched by the nth set of parentheses again”.
This can be used to look for repeating patterns. For a simple example:

(.+)\1

It matches any string that has any sequence of characters repeated twice. For example, any of
the following would match:

XX 123...123... _1__1_ FredAndMaryFredAndMary

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 42/155

I.9.5 Match Variable References Outside an Expression

After the $REGEXP command has completed execution successfully (i.e. the pattern matched),
the values of the match variables are available for use in the script. This is done by referring to
the variables “1” through “9” as &1 through &9.

For example, the following can be used to extract the numeric part of a name:

The number is $IF($REGEXP(.*(\d+), $DEVNAME))&1$END

In this case, if the name has no numeric part, nothing will be output. An $ELSE clause on the $IF
could be used to perform some other operation.

I.9.6 Differences from Unix Regular Expressions

For users familiar with Unix regular expressions, there are only a couple of minor differences,
imposed by the structure of a command file:

The ^ and $ operators that match the beginning and end of a line are not implemented. In this
implementation, the regular expression must always match the whole subject string, so they are
superfluous.

A comma character “,” must be escaped when used in a regular expression, because it will
otherwise terminate the argument string to the $REGEXP command. I.e. if you need to match a
comma, you must put "\," in the regular expression.

I.9.7 Regular Expression Examples

This section offers a number of examples of using regular expressions for error checking and for
extracting or reformatting text data.

Checking for Numeric Data

Regular expression alone:

|.*\D.*

Simple script usage:

$IF($REGEXP(|.*\D.*, $PINNUM))$SETVAR(_Error, 1)$END

This expression matches any text string that is either empty (that is, zero length) or contains any
non-numeric character. This could be used, for example, to check for invalid pin number data
during netlist generation. This example looks a bit strange because it starts with an "|" alternation
operator that is supposed to work on two operands. In this case, the left hand operand is nothing,
or the empty string. The right hand operand of the "|" is ".*\D.*", in other words "any string of zero
or more characters, followed by a single, non-decimal character, followed by any string of zero or
more characters".

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 43/155

Checking for Invalid Characters in Names

Regular expression alone:

[a-zA-Z_]+

Simple script usage:

$FIND $DEVICES $NOT($REGEXP([a-zA-Z0-9_]+, $DEVNAME))

This example makes use of the "[]" operator to list the allowable characters in a device name, in
this case letters, numbers and the underscore character.

Extracting Data Fields

Regular expression alone:

([A-Za-z0-9_$\-]+).*

Simple script usage:

$IF($REGEXP(([A-Za-z0-9_$\-]+).*, $BUSNAME))&1$END

This example is making use of extra parentheses to assign parts of the matched text to match
variables. The "[A-Za-z0-9_$\-]+" portion of the expression matches any string of one or more of
the characters listed in between "[" and "]". The parentheses around this part of the expression
cause the result of this portion of the match to be assigned to match variable number 1. The
remaining portion of the expression ".*" will match all remaining characters in the target string.

The script example shown was created to take bus names like "DATA[0,15]" and extract only the
name from the front. In this case, once the expression has matched, the script variable &1 will
have the value of the portion of the text that matched the portion of the expression in
parentheses.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 44/155

I.10. Script Examples

I.10.1 EMTP Netlist.rfm

The file “EMTP Netlist.rfm” contains the script used by EMTPWorks to generate the EMTP data
Netlist. The following lines paragraphs provide step by step explanations on this script:

{

 EMTP Netlist Generator

 C. Dewhurst - Feb 18, 2003

}

Comments are enclosed between left and right braces, “{ and }”.

$CREATEREPORT($DESIGNNAME.net)

Creation of the report output file. The output file will be named $DESIGNNAME.net. The keyword
$DESIGNNAME returns the current design’s name.

$BUSNAMEON()

This indicates that the name of the bus (bundle) will be added for any reference of a signal name
in a bundle.

$LINEWIDTH(100)

This sets the maximal number of characters to output in one line of the file, i.e. in this case 100.

$CONTEND(,)

This specifies a character to be added at the end of a line that has to be wrapped.

$CONTSTART()

This specifies a character to be added at the beginning of a wrapped line.

$SETVAR(_Errors,){ This will become non-blank if any errors found }

This sets a new variable named _Error. It is initialized to null.

$DEFINEATTR(PhaseTemp/DM)

{ Define a temporary field for use calculating device phases }

This sets a new attribute. The letter D means that this attribute is for a device and the letter M
means that is a temporary field. For more information on others specifications, see
$DEFINEATTR.

! Generated by EMTPWorks version $DWVERSION $DATE $TIME

!

Circuit.Diagram=$FILENAME;

Circuit.Date=$DATE($d/$m/$Y) $TIMEMODIFIED($h:$n:$s);

If the text is not a command, it is put as raw text in the report. $DWVERSION returns a string with
the current EMTPWorks version. $DATE and $TIME return respectively the current date and
time. $TIMECREATED/$TIMEMODIFIED return the creation and modification times respectively.

$IF(&ParamsEMTP)

!

&ParamsEMTP

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 45/155

$END

The “&” symbol is used to access variables and attributes. The following script means that if the
attribute ParamsEMTP is non-null, “!” character followed by the ParamsEMTP design attribute is
written in the report.

The next lines are used to define a subroutine that can be called from anywhere in the code.

{

This block defines the output for each device line. 3-phase items

(Phase attribute is "3") are replicated for each phase.

}

$DEFINEBLOCK(DevNet)

A block named DevNet is defined. This block is like a function, it contains lines that will be
executed later in the script for listing devices. This block ends when the command $END is
reached. The block allows listing the device signal names using the pin format. Each pin is
connected to a signal.
The block has several sections for each type of device Netlist. Currently there are 2 types of
signal formats to be treated: general (1-phase) and 3-phase. Since the GND signal is treated as a
blank character in the Netlist, it must be tested separately. A general signal may be used as a
phase signal in which case it must be appended with the phase character ‘a’, ‘b’ or ‘c’. This
character is available for 1-phase signals through the keyword $EMTPPHASE. In all other non 3-
phase cases, $EMTPPHASE is empty.

$IF(&Depth) { Format for sub-circuit devices }

This condition is true if the device’s attribute Depth is non-null. This attribute is non-null if the
device is in a sub-circuit. The following lines define the pin format for subcircuits.

 $DEVPINFORMAT

 (

$IF($GT($PINSEQ,0))$CONTEND(,)$END

$IF($EQ($EMTPPHASE,3))

 $IF($EQ($SIGNAME,GND)),,$ELSE$SIGNAME\a,$SIGNAME\b,$SIGNAME\c$END

$ELSE

 $IF($NE($SIGNAME,GND))$SIGNAME$EMTPPHASE$END

$END

)

The pin names are comma separated. A comma is added at the end of the wrapped line if the
device has pins and only after listing at least one pin.
The following lines provide the complete subcircuit device format.

 $IF(&Visual.Dev)|$ELSE@$END&PartTemp;

 $DEVNAME;

 $NUMEMTPPINS;

 $CONTEND()$PINS$CONTEND(,),

 $IF(&ParamsA)$NEWLINE&ParamsA$END

 $IF(&ModelData)$NEWLINE&ModelData$END

A different first character is used to distinguish between visual and standard subcircuits.
$DEVNAME returns the device’s name.
$NUMEMTPPINS returns the real number of pins (a 3-phase pin is counted 3 times).
$NEWLINE inserts a new line. The attributes &ParamsA and &ModelData are used for saving
device data and listed only if non-empty. These will be available for masked devices.
A typical example is given by:

@3p_test_a75f5bc8;DEV2;8;s61a,s61b,s61c,s62a,s62b,s62c,s59b,s60,

The device DEV2 has 8 pins. There are two 3-phase pins: s61 and s62. The signal s59b is
connected to the phase b of a 3-phase signal. The signal s60 is a general signal.

The following lines are for non-subcircuit devices.

$ELSE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 46/155

 $IF($EQ(&PhaseTemp, 3))

 { Format for 3-phase, non-sub-circuit devices }

 $DEVPINFORMAT(

 $IF($GT($PINSEQ,0))$CONTEND(,)$END

 $IF($NE($SIGNAME,GND))

 $SIGNAME

 $IF($EQ($EMTPPHASE,3))

 ~

 $ELSE

 $EMTPPHASE

 $END

 $END)

In the case of 3-phase devices it is needed to replicate the device for each phase. The format
listing is first saved into a temporary variable _TEMP and then used in the replication process.
$SETVAR(_TEMP,_&Part\;$DEVNAME~\;$NUMEMTPPINS;$NUMPINS;$CONTEND()$PINS$CONTEND(,)\,)

 $REPLICATE(&_TEMP, ~, , a)

 $IF(&ParamsA)$NEWLINE&ParamsA$END

 $IF(&ParamsExtra),&ParamsExtra$END

 $NEWLINE

 $REPLICATE(&_TEMP, ~, , b)

 $IF(&ParamsB)$NEWLINE&ParamsB$END

 $NEWLINE

 $REPLICATE(&_TEMP, ~, , c)

 $IF(&ParamsC)$NEWLINE&ParamsC$END

 $IF(&ModelData)$NEWLINE&ModelData$END

$REPLICATE replaces the ~ character by letters a, b, or c in the variable _TEMP. A typical
example if given by this 3-phase RLC device:

_RLC;RLC1a;2;2;s2a,s6a,

1,0,0,0,0,

_RLC;RLC1b;2;2;s2b,s6b,

1,0,0,0,0,

_RLC;RLC1c;2;2;s2c,s6c,

1,0,0,0,0,

The device is replicated 3 times and its name and signals are appended with the applicable
phase character. If a given device has 3-phase and 1-phase signals (pins), then its 1-phase
signals are listed (repeated) on all phase lines without appending the phase character.
It is noticed that only power pins can become 3-phase.

If a device has no 3-phase signals, then it is listed using the code below:

 $ELSE

 { Format for single-phase, non-sub-circuit devices }

 $DEVPINFORMAT(

 $IF($GT($PINSEQ,0))$CONTEND(,)$END

 $IF($NE($SIGNAME,GND))$SIGNAME$EMTPPHASE$END)

 $IF(&Depth)$IF(&Visual.Dev)|$ELSE@$END$END_&Part;

 $DEVNAME;

 $NUMEMTPPINS;

 $NUMPINS;

 $CONTEND()$PINS$CONTEND(,)

 $IF(&ParamsA),$NEWLINE&ParamsA$END

 $IF(&ModelData)$NEWLINE&ModelData$END

 $END

 $END

$END

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 47/155

The following lines are used to create a block for the basic circuit format.

{

 This block defines the basic circuit format that is used

 by the top-level circuit and all subcircuit blocks

}

$DEFINEBLOCK(Circuit)

{

 Run through devices and figure out which ones are 3-phase

 (i.e. have at least one 3-phase pin)

}

$REPORTOFF

$DEVPINFORMAT $IF($EQ($EMTPPHASE, 3))3$END

$FIND $DEVICES { Scan all devices }

$ITEMSEPARATOR()

$DEVICES $PINS $SETATTR(PhaseTemp, $IF($NONBLANK($PINS))3$END)

$REPORTON

$BUSNAMEON()

{

 Set formats for regular device listing

}

$ITEMSEPARATOR(,)

{

 Print the main device list for this circuit level

}

$FIND $DEVICES $NOT(&Exclude)

$SORT $DEVICES &Depth &Part &PartTemp $DEVNAME

$FIND $SIGNALS

$PROGRESS(Writing netlist) $PERCENTON

$DEVICES $INLINE(DevNet)

$END

The command $REPORTON/$REPORTOFF when OFF means that all the following lines will not
be written into the report until the command $REPORTON appears.
The first script lines are used to find the 3-phase devices.
Before listing the devices it is needed to exclude those that are excluded in the design: the
&Exclude attribute is used in the design to indicate an excluded device.
The $SORT command sorts the devices. The subcircuits are listed first, and then the devices are
sorted by the Part or PartTemp attributes or by device name.
After finding all signals, the devices are listed using the DevNet block. The command $INLINE
means that the script in the block will be executed like if it was appearing on one line.

The command $DEFINECIRCUIT indicates the start of an internal circuit definition. The end of
this definition is set by the $END command. This block is referred by the $INTERNAL command.
This script will be used to output the internal circuit of all devices that contain the $INTERNAL
command. The previously defined Circuit block is reused through the $INCLUDE command.

{

 This defines the format for a subcircuit

}

$DEFINECIRCUIT

$LINEWIDTH(100)

$CONTEND(,)

$CONTSTART()

$INCLUDE $BLOCK(Circuit)

$END

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 48/155

At this stage everything is ready to start the actual Netlist printing for all devices. The first step is
to list the simulation option devices. These are notified by the &Function attribute value OPTION.

{

 Display general option devices, distinguished by OPTION

 in the Part attribute field

 NOTE: Only items in the top-level circuit are listed.

 Options devices in subcircuits will be ignored.

}

$HIERARCHY $TOPCIRCUIT

$FIND $DEVICES $REGEXP(OPTION.*, &Function)

$IF($GT($DEVCOUNT, 0))

!

! The following lines are derived from option symbols

! on the schematic

!
$DEVICES$IF(&ParamsA)&ParamsA$IF(&ModelData)$NEWLINE&ModelDataENDELSE&ModelData$END

$END

$HIERARCHY $TOPCIRCUIT command means that only OPTION devices from the topmost
circuit in the current design are accepted.

Next script lines are for the standard devices starting with subcircuit definitions.
{

 This is where the actual output generation starts.

 Put out the subcircuit definitions

 $PURE script mode lets us list each internal circuit once

 While we're at it, make sure a value has been specified in the Part attribute.

 If not, use the type name. This isn't an issue for library parts, but some

 users (your humble authour, for example) may produce a subcircuit block

 and forget to put a value in the Part field.

}

$HIERARCHY $PURE

See $HIERARCHY command reference for more details on the $PURE option.

$FIND $DEVICES &Depth

$IF($GT($DEVCOUNT, 0))

!

! Subcircuit definitions

!

$REPORTOFF

$DEVICES$SETATTR(PartTemp,

$IF($NOT(&Part))$TYPENAME$ELSE&Part$END_$HEX($CHECKSUM))

The part name Part is completed using a hexadecimal code to create PartTemp. See the
$CHECKSUM command reference for more information.
The subcircuit devices are sorted using the &Depth and &ParTemp attributes. The command
$INTERNAL calls the $DEFINECIRCUIT script.

$REPORTON

$SORT $DEVICES &Depth &PartTemp

$COMBDEVSON

$DEVPINFORMAT

$IF($EQ($CHILDEMTPPHASE,3))

 $CHILDSIGNAMEa,$CHILDSIGNAMEb,$CHILDSIGNAMEc

$ELSE

 $CHILDSIGNAME$CHILDEMTPPHASE

$END

$ITEMSEPARATOR(,)

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 49/155

$DEVICES<&PartTemp;$NUMEMTPPINS;$PINS$SINGLE,$INTERNAL>

!

!

$END

An example of subcircuit definition is given by:

<3p_test_a75f5bc8;8;s52a,s52b,s52c,s57a,s57b,s57c,s54,s55,

_RLC;R2a;2;2;s52a,s57a,

1,,,,,

_RLC;R2b;2;2;s52b,s57b,

1,,,,,

_RLC;R2c;2;2;s52c,s57c,

1,,,,,

_RLC;R3;2;2;s54,s55,

1,,,,,

>

All interface pins are appearing following the subcircuit identification and number of pins.

At this stage the hierarchy is set to TOPCIRCUIT to start listing devices that are not located in
subcircuits.

{

 Here is where the actual top-level report starts

}

$HIERARCHY $TOPCIRCUIT

$COMBDEVSOFF

{

 Do the main top-level listing

}

$INCLUDE $BLOCK(Circuit)

The script from the block Circuit is executed to list the devices of the top-level circuit.

At this stage the entire Netlist has been completed. The following lines are used to optionally
open the Netlist in the EMTPWorks text editor. This option is selected by setting the first
argument of the complete script to OPEN.

{

 If global params indicate we want an open, do that now

}

$IF($EQ(OPEN, &ARG1))

$CLOSEREPORT

$TEXTOPEN($DESIGNNAME.net)

$END

It is also allowed to immediately start the EMTP program after creating its Netlist.

{

 If global params indicate we want EMTP started, do that now

}

$IF($EQ(EMTP, &ARG1))

$CLOSEREPORT
$SYSTEMOPEN(emtp/emtpopt.exe, "emtprv.ini;emtprvstate.ini;$DESIGNPATH$DESIGNNAME.net;1;")

$END

The above script “EMTP Netlist.rfm” is called from JavaScript codes attached to EMTP menu
items. You can identify the scripts by looking into the EMTP.INI file section on menus.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 50/155

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 51/155

II. Part II – Script Keyword Reference

This part of the manual lists all the command keywords defined in the script language, in
alphabetical order.

Many of the keywords described here were added to the language to support specific Netlist
formats or customer requirements. We do not guarantee that all keywords and commands have
been tested in every possible combination. When using these commands to create critical
Netlists or reports, please verify your results carefully before relying on them!

For each keyword, the following information is provided:

• Keyword—the keyword as it should appear in the script. In some cases, two or more
related keywords are grouped together.

• Status—this indicates whether any changes have been made since a previous version.

• Synopsis—A short summary of the usage of the keyword, i.e. what arguments it takes.
Note that the following meta-characters are used to indicate optional or alternative
constructions in the synopsis:

o [] surround an optional item, e.g. $DATE[(format)].
o | indicates an alternative, for example $SORT $DEVICES|$SIGNALS.
o italics indicate an item that should be replaced by text performing the given

function, e.g. msgText will be replaced by the actual argument text.
o bold type indicates literal text that should be included exactly as given.

• Returns—a description of the "return value" of the keyword, i.e. what value will get
substituted for it in the output file. N.A. (not applicable) indicates that this keyword has no
value.

• Type—this will be either "Data", "Action", or "Definition". This distinction determines how
the keyword is handled if it appears by itself on a line. If a line of the script contains only
Definition or Action keywords, then no line terminator is written out to the file. If the line
contains one or more Data keywords, then the line is considered to be output data and a
line terminator will be written out after all data generated by the keywords.

• Where—this indicates where the keyword can be used. The following locations are
specified:

Top Level The keyword must be on a line by itself, starting in column 1.
This keyword can operate successfully without any current
design.

Top Level - Design The keyword must be on a line by itself, starting in column 1,
and there must be a current design available in order for the
keyword to obtain the data necessary to calculate its value or
perform its function.

Script The keyword can be in any executed part of the script, i.e. not
in a value mapping table or other areas that are interpreted as
raw data. The keyword does not need to refer to any object to
perform its function.

Script – Design As for Script, except that there must be a current design.

Script – Device As for Script, except that there must be a current device at the
position the keyword is at in the script.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 52/155

Script – Signal As for Script, except that there must be a current signal at the
position the keyword is at in the script.

Script – Pin As for Script, except that there must be a current pin at the
position the keyword is at in the script.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 53/155

Keyword 1 $ALERT1/$ALERT2
Status

Synopsis $ALERT1(message)

Returns Boolean

Type Data

Where Script

Description Displays an alert box to the user with the given message text. $ALERT1 dis-
plays only one button, OK. $ALERT2 displays two buttons, OK and Cancel.
Returns TRUE for OK, FALSE for Cancel.

Example $ALERT1($TIME is too late for this kind of thing. Go home!)

If $ALERTx is used on a line by itself, it will insert the value "1" into the output file if OK is
pressed, which may not be desired. You can prevent by enclosing the whole thing in a $NULL
command, as in:

$NULL($ALERT1(Warning: Some value changes were made.))

➢ See also: $PROMPT1/$PROMPT2

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 54/155

Keyword 2 $ALIGNCOLSON/$ALIGNCOLSOFF
Status

Synopsis $ALIGNCOLSON
$ALIGNCOLSOFF

Returns N.A.

Type Definition

Where Top Level

Description Turns on/off automatic column alignment.

Example $ALIGNCOLSON

When ON, it is causes extra blanks to be inserted between netlist or component list entries. If
$ALIGNCOLS is OFF, then the item separator can be a tab if $TABFIELDS is ON, or a single
blank otherwise. Default is OFF.

The column spacing that is used by the $ALIGNCOLSON option is set by the $SPACE command.

You may have to insert a number of blanks at the front of continuation lines using $CONTSTART
to force correct alignment of the first item in each continuation line.
See also: $SPACE.

Keyword 3 $AND
Status

Synopsis $AND(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs a logical AND operation on its two arguments. Any non-null string in an
argument is considered TRUE.

Example $IF($AND(&X1, &X2))&X1/&X2$ELSE&X1&X2$END

Keyword 4 $ASSIGNINSTNAMES
Status

Synopsis $ASSIGNINSTNAMES $DEVICES|$SIGNALS format

Returns N. A.

Type Action

Where Top level - Design

Description Assigns default names to the InstName field of any device or signal not having
one.

Example $ASSIGNINSTNAMES $DEVICES

The $ASSIGNINSTNAMES command has exactly the same format and operation and the
$ASSIGNNAMES command except that it operates on the InstName field instead of the Name
field. It is intended for use when producing flattened netlists from designs created in the Physical
Hierarchy mode. The Physical Hierarchy mode allows the InstName field to take on a different
value for each physical device represented by a design, and so can be made unique throughout a

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 55/155

hierarchical design. By contrast, the Name field is only guaranteed to be unique within a single
circuit block and will be the same inside all instances of the same sub-circuit.

For a complete format summary, see: $ASSIGNNAMES.

Keyword 5 $ASSIGNNAMES
Status

Synopsis $ASSIGNNAMES $DEVICES|$SIGNALS format

Returns N. A.

Type Action

Where Top level - Design

Description Assigns default names to the Name field of any device or signal not having one.

Example $ASSIGNNAMES $DEVICES

The $ASSIGNNAMES command is used to apply names to unnamed devices or signals in the
circuit before a listing is generated. If this is not done, any object which has not been named
(either manually or by the auto-naming or packaging features) will appear as "unnamed" in a net
or component list.

The names assigned by $ASSIGNNAMES will be invisible but permanently associated with the
object. They can be made visible either using the Attributes command associated with the object
or the Browser tool.

Note that $ASSIGNNAMES can be used in conjunction with the $FIND command to assign
names to selected subsets of devices, such as all resistors, etc. See the Examples section for
more information.

The "object type" specification (either "$DEVICES" or "$SIGNALS") is mandatory, all other items
are optional.

Note that the same format and options apply to the $ASSIGNINSTNAMES command.

Note the following examples:

$ASSIGNNAMES $DEVICES $TYPENAME $FORMAT(format) &prefixField

$ASSIGNNAMES $SIGNALS &prefixField

The $TYPENAME, $FORMAT and &prefixField items are all optional and specify how a name is
to be generated. If none of these items appears on the line, then the default format will be used.
For devices, this is the contents of the prefix field plus an integer. For signals, it is the specified
default signal prefix plus an integer.

$TYPENAME indicates that the device's type name (i.e. the name that appears in the Parts
palette) is to be used as a prefix. If a $FORMAT appears as well, or if the default format is used,
the type name is prefixed to the name that would be generated by the $FORMAT alone.

&prefixField specifies an attribute field to be used as a source for a prefix. If all three format
specifications are given, all three prefixes will be concatenated.

In normal circuits, we do not recommend specifying the following $FORMAT option in
$ASSIGNNAMES or $ASSIGNINSTNAMES when assigning to signals. If you specify a format
that is anything other than the default, the Schematic tool will assume these are fixed, user-
assigned names and will not reassign them during editing operations. This can result in errors if
a section of schematic is copied, creating duplicate names.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 56/155

$FORMAT specifies a format string consisting of an alphabetic part followed by a numeric part.
The alphabetic part will be used as the prefix for every name generated. The numeric part is
used simply to specify the number of digits to be used. For example, the default format "D00000"
indicates that all names are prefixed with "D" and the numeric part will have a fixed length of 5
digits. Extra digits are added to the numeric part if needed, so "U0" will generate U123 for the
123rd device.

➢ See also: $UNNAMEDDEVS $UNNAMEDSIGS $ASSIGNINSTNAMES

Keyword 6 $AUTONUMBER
Status

Synopsis $AUTONUMBER(number of pins)

Returns N. A.

Type Definition

Where Top-Level

Description Specifies a number of pins less than or equal to which a device will have pin
numbers automatically assigned in the report output for any reference to
$PINNUM.

Example $AUTONUMBER(3)

Will automatically provide a pin number whenever a $PINNUM command
appears for an unnumbered device pin on a device which has 3 or less pins.

Any device with less than or equal to the number of pins specified will have pin numbers
automatically substituted if the $PINNUM keyword is used and no pin numbers are present in the
circuit file. This option is intended to provide pin numbers for discrete components in a circuit,
since they do not normally have pin numbers on a diagram. The default number is zero. Note
that this option does not make any change to the circuit data itself, but is simply a substitution that
is made during report generation.

Keyword 7 $BLANKREPLACE
Status

Synopsis $BLANKREPLACE(string)

Returns N. A.

Type Definition

Where Top-Level

Description Specifies a string of characters that will be substituted for a blank in any device
or signal name.

Example $BLANKREPLACE(_)

Will replace each blank in a name with an underscore character.

The $BLANKREPLACE item specifies a string of characters that will be substituted for a blank in
any device or signal name. This is done to accommodate systems which cannot accept blanks in
names.

➢ See also: $CHARMAP.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 57/155

Keyword 8 $BREAK
Status

Synopsis $BREAK(blockName) $DEVICES|$SIGNALS [$FIRSTON/OFF] format

Returns N. A.

Type Definition

Where Top-Level

Description Sets up a value break condition for a subsequent $DEVICES or $SIGNALS
listing.

Example $BREAK(PartsHdr) $DEVICES &Value

Will insert the contents of block "PartsHdr" at the front of the next $DEVICES
listing and again every time &Value changes.

The $BREAK command is used to create listings such as parts lists in which a title block or page
break is inserted between groups of lines that are related by some value. For example, you could
create a listing in which capacitors are grouped together, resistors are grouped together, etc.

Following is a typical example of usage of this feature:

$DEFINEBLOCK(PartsHdr)

-- Here are the parts of type &Function

$END

$SORT $DEVICES &Function $DEVNAME

$BREAK(PartsHdr) $DEVICES &Function

$DEVICES$DEVNAME &Value

Before each line is generated, the Scripter evaluates the format string, in this case "&Function"
and compares the current value to the value in the last line. If the value is different, the contents
of the block "PartsHdr" are evaluated and written to the output.

Notes on the $BREAK command:

• Before performing the listing, you must have specified a $SORT on the same value that
is used for the break, or the listing will not make much sense. This is not checked by the
program. If you have not sorted, the program will simply insert a header whenever two
adjacent lines have different values of the format string.

• While the header block is being interpreted, the "current object" is the device or signal
that is about to be listed. Thus, if you make reference to an attribute or command that
refers to an object, it will use the values that would be in effect for the next line.

• You can control whether a header is inserted before the first line using the $FIRSTON/
$FIRSTOFF keywords. See below.

A break remains in effect for all subsequent listings once it is established. To turn if off again, you
can specify a null format string, as in:

$BREAK(PartsHdr) $DEVICES

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 58/155

Optional Header Insertion Before First Break

The optional keywords $FIRSTON/$FIRSTOFF can be used to control whether a break header is
inserted before the start of the listing. If the $FIRSTON keyword appears immediately after
$DEVICES or $SIGNALS, then the break header will be inserted immediately before the first
device or signal line. If $FIRSTOFF appears, no header will be inserted until the first value
change. The default is $FIRSTON.

➢ See also: $HEADER.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 59/155

Keyword 9 $BUSCLOSE
Status

Synopsis $BUSCLOSE(string)

Returns String

Type Data

Where Script – signal

Description Returns the given string if the current object is in a named bus.

Examples $SIGNALS$BUSNAME([)$SIGNAME$BUSCLOSE(])

This will generate a list of the signals in the circuit. If a signal is in a bus, then it
will appear as "busName[sigName]", otherwise it will just appear as "sigName".

➢ See also $BUSNAME.

Keyword 10 $BUSNAME
Status

Synopsis $BUSNAME[(suffixStr)]

Returns Text

Type Data

Where Script – signal

Description Returns the name of the bus associated with the current object. An optional
suffix string allows this keyword to be used with $SIGNAME to provide a
compound name when the signal is in a bus.

Examples $SIGNALS$BUSNAME(_)$SIGNAME

This will generate a list of the signals in the circuit. If a signal is in a bus, then it
will appear as busName_sigName, otherwise it will just appear as sigName.

The naming rules in EMTPWorks allow signals with the same name to exist in multiple different
busses without being connected. This means that any report output referring to $SIGNAME risks
being ambiguous if busses have been used in the design. For this reason, it is best to qualify
signal names with the name of any enclosing bus. $BUSNAME allows this by inserting the name
of any enclosing bus and an optional separator character in the output.

Because the given separator string is only inserted if the bus name is non-null, $BUSNAME can
always be inserted in front of the $SIGNAME command without interfering with non-bussed
signals. $BUSNAME can also be used in conjunction with $BUSCLOSE to give names that are
enclosed in parentheses or similar separators. For example:

$SIGNALS$BUSNAME(<)$SIGNAME$BUSCLOSE(>)

will generate signal names of the form DATABUS<D0>. To take this example one step further,
note how we can use a regular expression to create a vector notation for signal names with a
numeric component (note that this must all appear on one line in the script):

$IF($AND($BUSNAME, $REGEXP(\D*(\d+), $SIGNAME))) $BUS-

NAME<&1>$ELSE$SIGNAME$END

For a signal called A13 in a bus called ADDR, this will generate ADDR<13>. For non- bussed
signals, it will simply output the signal name.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 60/155

➢ See also: $BUSNAMEON/$BUSNAMEOFF.

Keyword 11 $BUSNAMEON/$BUSNAMEOFF
Status

Synopsis $BUSNAMEON[(prefixStr[,suffixStr])]
$BUSNAMEOFF

Returns N. A.

Type Definition

Where Top-Level

Description Causes the name of the enclosing bus to be automatically inserted whenever
$SIGNAME is used referring to a signal in a bus. If the bus exists, the prefixStr
text is inserted immediately after the bus name and the suffixStr text is inserted
immediately after the signal name. This setting remains in effect for all listings
until a $BUSNAMEOFF is encountered.

Examples $BUSNAMEON(\[,\])

Specifies that all references to the $SIGNAME of a bussed signal will now be
listed as busName[sigName]. Note: The escape (backslash) character used in
front of each of the arguments is not strictly necessary in this case but is used to
clarify that these are intended as literal text.

➢ See also : $BUSNAME $BUSCLOSE.

Keyword 12 $BUSPINCLOSE
Status

Synopsis $BUSPINCLOSE(string)

Returns String

Type Data

Where Script – pin

Description Returns the given string if the current pin is an internal pin inside a bus pin.

Examples See $BUSPINNAME

➢ See also $BUSPINNAME.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 61/155

Keyword 13 $BUSPINNAME
Status

Synopsis $BUSPINNAME[(suffixStr)]

Returns Text

Type Data

Where Script – pin

Description Returns the name of the bus pin associated with the current bus internal pin, or
null if the current pin is not a bus internal pin. An optional suffix string allows this
keyword to be used with $PINNAME to provide a compound name when the pin
is in a bus.

Examples $DEVPINFORMAT$BUSPINNAME([)$PINNAME$BUSPINCLOSE(])

This sets the format for a pin listing so that if a pin is in a bus pin it will appear as
"busPinName[pinName]", otherwise it will appear as "pinName".

The naming rules in EMTPWorks allow pins with the same name to exist in multiple different bus
pins without being connected. This means that any report output referring to $PINNAME risks
being ambiguous is bus pins have been used in the design. For this reason, it is best to qualify
pin names with the name of any enclosing bus pin. $BUSPINNAME allows this by inserting the
name of any enclosing bus pin and an optional separator character in the output.

Because the given separator string is only inserted if the bus pin name is non-null, $BUS-
PINNAME can always be inserted in front of the $PINNAME command without interfering with
non-bussed pins. $BUSPINNAME can also be used in conjunction with $BUSPINCLOSE to give
names that are enclosed in parentheses or similar separators.

➢ See also: $BUSNAME $BUSPINCLOSE.

Keyword 14 $CALLTOOL
Status

Synopsis $CALLTOOL(toolName, [argumentString])

Returns Boolean

Type Data

Where Script (Note: Whether or not an object is required depends on the tool)

Description Transfers control to another EMTPWorks tool (MEDA module) and passes some
argument information. Returns TRUE if the tool returns success, FALSE
otherwise.

Examples $CALLTOOL(Prompter, &FileName)

Calls the Prompter tool and passes the contents of the FileName attribute or
variable as an argument.

This command was implemented specifically to allow the Scripter to work with the Prompter, but
can also be used to invoke any other tool. The effect of this command is the same as if the tool
was invoked by selecting its name in the Tools menu. Note that the "toolName" argument that is
the string known as the tool’s "alias" that is hard-coded when the tool is created. In most cases
these are the same, but they may be different if any file names have been changed or if
EMTPWorks has been localized.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 62/155

Keyword 15 $CHANGECOUNT
Status

Synopsis $CHANGECOUNT

Returns Decimal integer.

Type Data

Where Script – Design

Description The number of changes (i.e. editing operations) performed on the circuit since it
was created, represented as a decimal integer. This number can be used to
check for matching versions of a circuit file.

Example $IF($NE($CHANGECOUNT, &OldChange))
$SETATTR(&OldChange, $CHANGECOUNT)
$NULL($ALERT1(The design has changed!))
$END

This will display an alert if the design has been edited since the last check.

Keyword 16 $CHARMAP
Status

Synopsis $CHARMAP(blockName, string)

Returns Text

Type Data

Where Script

Description Used to map the characters making up a string using a predefined table.

Example $DEFINEBLOCK(CharTable)
. _DOT_
/ _SLASH_
& _AMPERSAND_
$END
$DEVICES$CHARMAP(CharTable, $DEVNAME)

This will output device names, mapping characters according to the given table.
For example, a name "U1.1" will be output as "U1_DOT_1".

Note that the white space shown in this example is representing a single tab
character. Blanks do not count as separators and may be included in the
values.

This command allows you to map characters in strings by looking them up in a table. This can
allow you to translate data for use in systems that may have a more restricted character set.

The $CHARMAP function uses the same table format as the $MAP command, but differs in that it
operates on one character of the input string at a time. The values in the left hand column of the
table (i.e. before the separating tab) must be single characters, whereas the values in the right
hand column can be any string. This command operates by taking each character in succession
from the input string, matching it against a character in the left hand column, and replacing it by
the corresponding string in the right hand column. If a match is not found, the input character is
passed through to the output without modification. That is, only characters that are enumerated
in the left column will be modified.

Note these additional points regarding the $CHARMAP command:

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 63/155

• If a string with more than one character appears in the left column, only the first character
is used as a match value.

• If an empty string appears in the left column (i.e. a tab or line terminator is found
immediately), it is ignored.

• If you want to match with unprintable ASCII characters, you can use the ^ notation
described in “Control and Escape Characters” on page 16.

• Special characters like backslash "\" or the open comment "{" can be mapped by
preceding them with a backslash.

➢ See also: $MAP $VERIFY

Keyword 17 $CHECK
Status

Synopsis $CHECK(Message) $DEVICES|$SIGNALS

Returns N.A.

Type Data

Where Script – Device, Signal

Description This command returns an alert box if the current list of devices or signals is not
empty after a $FIND command.

Examples $FIND $DEVICES
$CHECK(The current circuit is not empty) $DEVICES

Will return an alert box if the circuit contains devices.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 64/155

Keyword 18 $CHECKSUM
Status

Synopsis $CHECKSUM

Returns Decimal integer.

Type Data

Where Script – Device

Description Returns the checksum of the device type associated with the current object.

Examples $DEVICES$DEVNAME $CHECKSUM

Will generate a listing of all devices in a circuit with their associated checksum.

The checksum of a device type is a program-generated 32-bit value which is generated from a
random number each time a device type (i.e. a library symbol definition) is created or modified. It
is used to distinguish between different versions of a symbol with the same name. This value is
not normally of interest to the user, but it can be useful for error checking or locating cases where
two device types of the same name have been used in a design inadvertently.

Keyword 19 $CHILDEMTPPHASE
Status

Synopsis $CHILDEMTPPHASE

Returns Single character ’a’ (phase-A signal), ’b’ (phase-B signal), ‘c’ (phase-C signal),
‘3’ (3-phase signal), ’X’ (mismatch) or null when standard signal

Type Data

Where Script - Pin

Description Applies only to pins on devices that have a subcircuit. Provides an indication of
the type of power signal that is associated with the corresponding pin in the
subcircuit .

Example $DEVPINFORMAT $IF($EQ($CHILDEMTPPHASE,3))$ALERT1(It’s 3-
phase)$END
$DEVICES $DEVNAME $PINS

See also $EMTPPHASE.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 65/155

Keyword 20 $CHILDSIGNAME
Status

Synopsis $CHILDSIGNAME

Returns Text

Type Data

Where Script – Pin

Description If the current pin is associated with a device that has a subcircuit, then this
keyword returns the name of the signal attached to the corresponding port in the
subcircuit. If the device has no subcircuit, then this simply returns the name of
the pin.

Examples $DEVPINFORMAT $CHILDSIGNAME
$DEVICES $TYPENAME $PINS

Keyword 21 $CIRCUITNAME
Status

Synopsis $CIRCUITNAME

Returns Text

Type Data

Where Script - Any object

Description This returns the name of the circuit associated with the current object.

Examples $DEVICES $DEVNAME $CIRCUITNAME

This keyword is intended for use in hierarchical designs to get the name of the circuit associated
with the current object. The following rules determine the value that is returned:

• If the current object is itself, or is inside, the top-level circuit in a hierarchical design, then
this is the design name and is the same as $DESIGNNAME.

• If the circuit is a subcircuit and the design is in Physical hierarchy mode, then the
hierarchical path to the circuit is returned.

• If the circuit is a subcircuit, it is not open for editing, and the design is in Pure mode, the a
name derived from the type name is returned.

• If the circuit is a subcircuit that is open for editing, and the design is in Pure mode, a
complete path is returned, as in Physical mode.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 66/155

Keyword 22 $CLEARERRORBIT
Status

Synopsis $CLEARERRORBIT(bitNum)

Returns N. A.

Type Action

Where Script - Any object

Description Clears the given bit number in the binary error set represented in the object’s
"OKErrors" attribute field. OKErrors attribute data format is hexadecimal.

Examples $DEVICES$IF($ALERT2(Remove "Mark as OK" setting in

$DEVNAME?))$CLEARERRORBIT(7)$END

Will prompt the user if it’s OK to remove the "Mark as OK" setting on the each
device.

This call is one of a set of commands designed to implement a "Mark as OK" feature in error
checking scripts.

See the description of this feature under “Implementing Mark as OK in Error Checking Scripts” on
page 28.

➢ See also: $SETERRORBIT $ERRORBITON $ERRORBITOFF $CLEARERRORS

Keyword 23 $CLEARERRORS
Status

Synopsis $CLEARERRORS

Returns N. A.

Type Action

Where Script - Any object

Description Sets the object’s "OKErrors" attribute field to null.

Examples $DEVICES$CLEARERRORS

Will remove all "Mark as OK" settings in all devices.

This call is one of a set of commands designed to implement a "Mark as OK" feature in error
checking scripts.

See the description of this feature under “Implementing Mark as OK in Error Checking Scripts” on
page 28.

➢ See also: $SETERRORBIT $ERRORBITON $ERRORBITOFF $CLEARERRORBIT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 67/155

Keyword 24 $CLOSECIRCUIT/$CLOSEDESIGN
Status

Synopsis $CLOSECIRCUIT
$CLOSEDESIGN

Returns N. A.

Type Action

Where Top level – design

Description Closes the current design, exactly as if the user had selected the Close Design
menu command. Note that this command closes the design without asking for
saving design.

Examples $CLOSEDESIGN

Keyword 25 $CLOSEREPORT
Status

Synopsis $CLOSEREPORT

Returns N. A.

Type Action

Where Top level

Description Closes the current report file.

Examples $CLOSEREPORT

The $CLOSEREPORT command causes the current report output file to be closed. This can be
followed by another $CREATEREPORT command to create another output file, thus allowing a
single script file to generate multiple report files. The output file is normally closed automatically
at the end of the script file, so this command is only necessary to create multiple output files. If
$CLOSEREPORT is not followed by a $CREATEREPORT command, and subsequent listing
commands attempt to write output data, then the user will be prompted to provide a name for a
new output file.

Note that report files can be "nested" to any desired depth. I.e. if you do multiple successive
$CREATEREPORT commands without intervening $CLOSEREPORTs, output will be directed to
the file created by the most recent one. When it is closed, subsequent output will be directed to
the next most recent one, etc.

Keyword 26 $CLOSETRANSCRIPT
Status

Synopsis $CLOSETRANSCRIPT

Returns N. A.

Type Action

Where Top level

Description Closes the current transcript file.

Examples $CLOSETRANSCRIPT

This command closes the current transcript file, or does nothing if no transcript file is open. If no
transcript file remains open, any subsequent uses of $WRITETRANSCRIPT will have no effect
until another file is created using $CREATETRANSCRIPT.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 68/155

Note that transcript files (like normal output files) can be "nested" to any desired depth. I.e. if you
do multiple successive $CREATETRANSCRIPT commands without intervening
$CLOSETRANSCRIPTs, output will be directed to the file created by the most recent one. When
it is closed, subsequent output will be directed to the next most recent one, etc.

➢ See also: $CREATETRANSCRIPT.

Keyword 27 $COL
Status

Synopsis $COL(n)

Returns Text

Type Data

Where Script

Description If the current position in a line is less than N spaces from the left hand end then
blanks are inserted until the Nth column is reached. If the output is already at or
past the Nth column, nothing is output. For instance $COL(20) will force any
output to be indented to the 20th column of each line.

Examples Name$COL(20)Part Type$COL(40)Package Code
$DEVICES$DEVNAME$COL(20)$TYPENAME$COL(40)&Package
Will generate a simple bill of materials with items aligned at column 20 and 40.

Note that the column alignment generated by $COL(n) is strictly based on character count, and
so will depend on using a fixed-space font to generate printed output that is correctly aligned. If
you intend to transfer the data to a word processor or spreadsheet for printing, it will probably be
more appropriate to use tab separators between columns.

See also $TAB.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 69/155

Keyword 28 $COMBDEVSON/$COMBDEVSOFF
Status

Synopsis $COMBDEVSON
$COMBDEVSOFF

Returns N. A.

Type Definition

Where Top-Level

Description When ON, causes any subsequent $DEVICES listing to merge all devices with
the same sort value onto one line of output. The default value is OFF. If a
$DEVICES listing is requested with $COMBDEVSON and no sort, a warning
message will be issued.

Examples $SORT $DEVICES &Part
$COMBDEVSON
$DEVICES&Part$TAB$DEVNAME

This will produce a simple bill of materials with each line showing the part name
followed by a listing of the devices with that part type. If $COMBDEVSON was
not used, the output would contain one line per device with only a single name
on each line.

More information on sorting and merging can be found in “Sorting and Merging” on page 23.

Keyword 29 $COMBPINSON/$COMBPINSOFF
Status

Synopsis $COMBPINSON
$COMBPINSOFF

Returns N. A.

Type Definition

Where Top-Level

Description When ON causes multiple pin connections on the same device to to be com-
bined without repeating the device name. The default is OFF. For example:

With $COMBPINSON: IC1-2,5,6,12
With $COMBPINSOFF: IC1-2 IC1-5 IC1-6 IC1-12

Examples $COMBPINSON

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 70/155

Keyword 30 $COMBSIGSON/$COMBSIGSOFF
Status

Synopsis $COMBSIGSON
$COMBSIGSOFF

Returns N. A.

Type Definition

Where Top-Level

Description When ON, causes any subsequent $SIGNALS listing to merge all signals with
the same sort value onto one line of output. The default value is OFF. If a
$SIGNALS listing is requested with $COMBSIGSON and no sort, a warning
message will be issued.

Examples $SORT $SIGNALS $PAGENUM
$COMBSIGSON
$SIGNALS$PAGENUMTABSIGNAME

This will produce a list of signals by page number with one line per page.

More information on sorting and merging can be found in “Sorting and Merging” on page 23.

Keyword 31 $CONTAINS
Status

Synopsis $CONTAINS(string1, string2)

Returns Boolean

Type Definition

Where Top-Level

Description This command returns TRUE if string1 contains string2

Examples $DEVICES $CONTAINS(&Name,R)

Keyword 32 $CONTEND
Status

Synopsis $CONTEND(string)

Returns N. A.

Type Definition

Where Top-Level

Description This command specifies a string to be added at the end of any line that will be
continued on the next line due to the line width or item count being exceeded.

Examples $LINEWIDTH(10)
$CONTEND(+)

➢ See also: $CONTSTART

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 71/155

Keyword 33 $CONTSTART
Status

Synopsis $CONTSTART(string)

Returns N. A.

Type Definition

Where Top-Level

Description This command specifies a string to be inserted at the start of any continuation
line generated due to the line width or item count being exceeded.

Examples $CONTSTART(+)

This will insert a "+" continuation character, typical of SPICE-based netlist
formats.

See also: $CONTEND

Keyword 34 $COUNT
Status

Synopsis $COUNT

Returns Decimal integer

Type Data

Where $DEVICES or $SIGNALS listing

Description This keyword returns the number of different Name values held by devices or
signals merged on the current line. This is intended for use in flat PCB designs
in which the package assignment is stored in the Name field. In this case
$COUNT in effect returns the number of physical devices represented by this
line.

Examples $SORT $DEVICES &Part
$COMBDEVSON
$DEVICES&Part $COUNT

This will produce a listing showing the number of each part type required by the
current design. Devices with multiple gates per package will count as 1 because
they have the same value in Name.

For a corresponding count in Physical hierarchy designs, see $COUNTINST.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 72/155

Keyword 35 $COUNTINST
Status

Synopsis $COUNTINST

Returns Decimal integer

Type Data

Where $DEVICES or $SIGNALS listing

Description This keyword returns the number of different InstName values held by devices or
signals merged on the current line. This is intended for use in physcial mode
PCB designs in which the package assignment is stored in the InstName field. In
this case $COUNTINST in effect returns the number of physical devices
represented by this line.

Examples $SORT $DEVICES &Part
$COMBDEVSON
$DEVICES&Part $COUNTINST

This will produce a listing showing the number of each part type required by the
current design. Devices with multiple gates per package will count as 1 because
they have the same value in InstName.

For a corresponding count in Flat mode designs, see $COUNT.

Keyword 36 $COUNTVALUES
Status

Synopsis $COUNTVALUES(string)

Returns Decimal integer.

Type Data

Where Script - any object

Description When multiple objects with the same sort value are merged on the same line,
any object-based value, such as $DEVNAME, could generate multiple different
values. This command provides a count of the number of values generated by
the command string given as its argument.

Examples $SORT $DEVICES &Part
$COMBDEVSON
$DEVICES&Part $COUNTVALUES($DEVNAME)

This script will list all part types in the circuit with a count of the number of
different usages of each type. This takes into account the fact that multiple
symbols may be assigned to one package, and will therefore have the same
name.

This command is used in conjunction with the sorting and merging features of the Scripter to
count the number of different values of a field found in a collection of objects. It can be used for
error-checking purposes to ensure that some group of objects have all been assigned the same
value, or can be used to generate counts of various kinds in parts lists.

See also: $SORT $COMBDEVSON/$COMBDEVSOFF $SINGLE $MERGE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 73/155

Keyword 37 $CREATEFOLDER/$CREATEDIRECTORY
Status

Synopsis $CREATEFOLDER(dirName)
$CREATEDIRECTORY(dirName)

Returns N. A.

Type Action

Where Top level

Description Creates a directory with the given name. If no path is given, the directory will be
created inside the "current" directory, usually the one containing the current
design. $CREATEFOLDER and $CREATEDIRECTORY are identical in function.

Examples $CREATEDIRECTORY($DESIGNNAME Reports)

This command creates a directory on disk. This is intended specifically for cases where netlist
formats require the generation of multiple files and it is most convenient to place them in a
separate directory.

The argument string can contain only the name for the new directory or it can specify a relative or
absolute path name. If no path is given, the new directory will be created in the current directory.
This is usually the directory containing the current design, unless there is no current design or it
has been set by another command.

If a relative path is given, it is relative to the current directory. This command will only create the
bottommost directory in the path, the others must already exist.

If an absolute path is given, it must start with the disk name.

If the specified directory already exists, it is left untouched and no error is given. After this
command has completed successfully, the current directory will be the newly-created one (or the
pre-existing one, if it was already there).

See more information about directories and path names in “File Names and Paths” on page 37.

See also : $FOLDER $DIRECTORY

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 74/155

Keyword 38 $CREATEREPORT
Status

Synopsis $CREATEREPORT[(nameString)][$PROMPT]
$CREATEREPORT $NULL

Returns N. A.

Type Action

Where Top level

Description Creates a report output file.

Examples $CREATEREPORT($DESIGNNAME.net) $PROMPT

This command creates a text file for subsequent report output. This allows you to eliminate or
control the automatic file save prompt that occurs when a script generates any output.

Note that output files can be "nested" to any desired depth. I.e. if you do multiple successive
$CREATEREPORT commands without intervening $CLOSEREPORT, output will be directed to
the file created by the most recent one. When it is closed, subsequent output will be directed to
the next most recent one, etc.

If the $PROMPT option is specified, the user will be prompted with a standard file save box with
the given name string as the default file name.

If $PROMPT is not specified, then the file will be created immediately with no user prompt. If the
file already exists, it is replaced with no user prompt. The file is created in the current directory,
which is normally the one containing the current design file. Note that $CREATEREPORT does
not accept a pathname as part of the file name. The directory can be specified by using
$FOLDER or $DIRECTORY to change the current directory.

The $NULL option causes a "null" file to be created, i.e. all output generated by the script will be
discarded. It cannot be used in conjunction with any of the other options.

For more information on text output files, see “File Input and Output” on page 37.

➢ See also: $CLOSEREPORT $CREATETRANSCRIPT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 75/155

Keyword 39 $CREATETRANSCRIPT
Status
Synopsis $CREATETRANSCRIPT[(nameString)][$PROMPT]

Returns N. A.

Type Action

Where Top level

Description Creates a transcript output file.

Examples $CREATETRANSCRIPT($DESIGNNAME Error Log)

This command creates a text file for subsequent transcript output, i.e. any strings written with the
$WRITETRANSCRIPT command. In terms of format and options, this command is identical to
$CREATEREPORT.

For more information on text output files, see “File Input and Output” on page 37.

See also: $WRITETRANSCRIPT $CREATEREPORT

Keyword 40 $DATE
Status

Synopsis $DATE
$DATE(formatString)
$DATE(formatString,valueString)

Returns Text

Type Data

Where Script

Description This command is used to display the current date or to convert raw decimal
integer date/time values to a desired format. The first form returns the current
date in the default format. The second form is used to specify any time or date
format using format keywords. The third form is used to provide a raw date value
for conversion. When used with an argument list, $TIME and $DATE are
identical in function.

Example This report was produced on a $DATE($W)

This will generate the day of the week, fully spelled out.

When used without an argument list, $DATE generates the current date in the default "long"
format for the host machine. This behaviour can be modified by adding an argument string
containing format keywords for the various date and time elements that are available. Any
characters in the format string that are not recognized as one of the following items will be
included literally in the output string. If a $ character is needed in the output, it can be escaped
by preceeding it with a backslash.

If a second argument is provided, it is assumed to be a decimal integer representing a date/ time
in raw form. This format is used to store dates for a variety of internal purposes such as device
date stamping, file modified dates, etc., so $DATE can be used to convert them for output.

See the table of date and time codes under $TIME.

➢ See also: $TIME $DATECREATED/$DATEMODIFIED

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 76/155

Keyword 41 $DATECREATED/$DATEMODIFIED
Status

Synopsis $DATECREATED
$DATEMODIFIED
$DATECREATED(formatString)
$DATEMODIFIED(formatString)

Returns Text

Type Data

Where Script

Description If used without arguments, $DATECREATED and $DATEMODIFIED return the
created or modified date of the current design in the default format. An argument
list can be added to specify any time or date format. When used with an
argument list, $TIMECREATED and $DATECREATED are identical in function
and, similarly, $TIMEMODIFIED and $DATEMODIFIED are identical.

Example Design $DESIGNNAME was created on $DATECREATED

These two commands are variations of the $DATE command and behave identically except that
they use the created or modified date of the current design, rather than the current date.

➢ See also $DATE $TIMECREATED/$TIMEMODIFIED

Keyword 42 $DEFINEATTR
Status

Synopsis $DEFINEATTR(fieldName/options[maxLength])

Returns N.A.

Type Action

Where Top level

Description Used to define a new attribute field for the design or modify settings in an
existing one.

Example $DEFINEATTR(TraceWidth/SY)

This will define a field called TraceWidth for signals. It will be marked as Pri-
mary. If the field already exists, it will be set to Primary if it is not already.

This command allows you to define an attribute field in the current design. It is not strictly
necessary to use this command to define a field before using it in a script. A $SETATTR on such
a field will always define it automatically with default settings in the designs attribute table.
However, the default settings may not be the desired ones and may change in future version of
EMTPWorks. For this reason, it is preferable to define a field before setting it. This way, you can
ensure that settings like the maximum length and the various options are appropriate for its
intended usage.

The $DEFINEATTR command can also be used to change certain settings in existing fields in a
design. No changes are allowed that would affect the usage of any existing fields. The items that
can be changed are noted in the table below.

The format string that is used to define a new field consists of:

• The name of the field

• A slash character "/"

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 77/155

• A number of upper case letters, each of which indicates an option. At least one option
must be specified, that being the allowable object type, i.e. device, signal, pin or design.

• An optional decimal integer indicating the maximum length.

Note that when attribute data is stored internally, it is always allocated as a variable-length string,
so there is no wastage of memory space by specifying a longer maximum length. The default
value is the maximum value of 32,000 characters.

The following table defines the meaning of the format code letters. Note that letters must be
given in upper case.

$DEFINEATTR Format Codes

Format
Letter

Modify Existing
Fields?

Meaning

D No Device

S No Signal

P No Pin

C No Design/Circuit

V Yes Visible by default

F No Fixed (i.e. cannot be changed by the user)

X No Value fixed - i.e. read only

I No Keep with instance

R Yes Rotate with object

N No Name characters only - not implemented

G Yes - except Name and

InstName

Group with name

W Yes Show field name

A No Allow carriage returns

L Yes Location fixed

Y Yes In primary list

T No Link to Part

U No Numeric characters only - not implemented

M No Temporary field - not saved with file, not visible
to user

At least one of D, S, P or C must be specified.

See also $SETATTR and the general information on attribute definitions provided in chapter
"Attributes" in the EMTPWorks User’s Guide.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 78/155

Keyword 43 $DEFINEBLOCK
Status .

Synopsis $DEFINEBLOCK(blockName)

Returns N.A.

Type Definition

Where Top level

Description Indicates the start of a block within a script.

Examples $DEFINEBLOCK(InternalCct)
$DEVICES$DEVNAME $PINS
$END
$DEVICES$INTERNAL(InternalCct)

This example creates a block that is referred to by the $INTERNAL command.
I.e. The script lines in the block will be executed to output the internal circuit of
each device listed in the last line.

A block is simply a contiguous sequence of lines within a script file. The $DEFINEBLOCK
command indicates the start of a block, but does not impose any meaning on it. The
interpretation of the contents of the block depends entirely on the command that refers to it.
Some commands, such as $INTERNAL, $INCLUDE or $EXECUTE, treat the block as a sort of
"subroutine", that is, a sequence of commands to be executed when called upon. Other
commands, such as $MAP, treat the block as a table of literal text values.

The only rules about the contents of a block are imposed by the requirement that the script parser
must be able to skip over the contents and find the corresponding $END. This imposes the
following limits on block format:
If the block contains commands, they must be a complete and valid set of commands. In
particular, any structure that requires an $END (e.g. $IF) must be completed within the block.

If the block contains literal data, there must be no data items that might confuse the parser in its
search for an $END. In particular, any items starting with a $ character must be escaped with a
backslash.

When the Scripter encounters a $DEFINEBLOCK command in the file, it notes the starting point
of the block and then skips over it. Execution resumes on the next line past the $END.

➢ See also: $INCLUDE $INTERNAL $MAP $VERIFY $TABLE $INLINE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 79/155

Keyword 44 $DEFINECIRCUIT
Status .

Synopsis $DEFINECIRCUIT

Returns N.A.

Type Definition

Where Top level

Description Indicates the start of an internal circuit definition within a script. This is actually a
special case of $DEFINEBLOCK and is exactly equivalent to:
$DEFINEBLOCK(_Internal_)

Examples $DEFINECIRCUIT
$DEVICES$DEVNAME $PINS
$END
$DEVICES$INTERNAL

This example creates a block that is referred to by the $INTERNAL command.
I.e. The script lines in the block will be executed to output the internal circuit of
each device listed in the last line.

Keyword 45 $DESIGNNAME
Status

Synopsis $DESIGNNAME

Returns Text

Type Data

Where Script - design

Description Returns the name of the current design, i.e. the file name with any "." extensions
removed.

Examples This report was generated from $DESIGNNAME

$DESIGNNAME can be used in the following areas:

• In an $INCLUDE command, for generating the name of the include file.

• In a $CREATEREPORT command, for generating the name of the report output file.

• In a $HEADER section.

• Anywhere else in the text of a script that is not part of some other definition or listing
command.

$DESIGNNAME vs. $FILENAME

The operation of the $DESIGNNAME and $FILENAME keywords is designed to make it easier to
work with "." dot extensions for report files.

$DESIGNNAME will be replaced by the name of the currently open design with any "." extension
removed. I.e. The program starts at the end of the name and scans forward. If a "." is found, it
and all following characters are removed. If no "." is found, the name is not changed.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 80/155

$FILENAME returns the name of the current design file verbatim, including any "." extension.

$DESIGNNAME vs. $CIRCUITNAME

In a flat (that is, non-hierarchical) design, $DESIGNNAME and $CIRCUITNAME are equivalent.
If the current object is, or is contained in, a sub-circuit in a hierarchical design, $DESIGNNAME
will always refer to the name of the topmost circuit, whereas $CIRCUITNAME gives a hierarchical
name of the current object’s circuit.

➢ See also: $CIRCUITNAME $CREATEREPORT $INCLUDE

Keyword 46 $DESIGNPATH
Status

Synopsis $DESIGNPATH

Returns Text

Type Data

Where Script - design

Description Returns the directory path to the current design file. If the current design file has
not been saved, this returns a null string. This behaviour provides a way of
checking if the design has been saved.

Examples The design is in directory $DESIGNPATH

This command provides the complete file path to the current design file, not including the file
name itself.

File paths start with the disk letter/colon or server name, followed by the directory path with
backslash characters as a separator. For example:

d:\projects\controller board\

Care must be taken in specifying path names in a report file. The backslash character used as a
directory separator is also the script language’s escape character. For this reason, if a file path
name must be specified explicitly in a script, you will have to double the backslash characters, as
in this example:

$SETVAR(SysDir, c:\\windows\\temp\\)

➢ See also: $SCRIPTPATH $TEMPPATH $PROGPATH $FULLPATH

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 81/155

Keyword 47 $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE
Status

Synopsis $DESIGNSIGSOURCE &fieldName
$DESIGNPINSIGSOURCE &fieldName

Returns N. A.

Type Definition

Where Top level

Description Specifies a design attribute which will contain a list of device attribute fields to be
used as signal sources.

Examples $DESIGNSIGSOURCE &SigSources

The $DESIGNSIGSOURCE and $DESIGNPINSIGSOURCE commands allow a single netlist
script to be used for multiple different designs that may have different ground and power
requirements.

In each case, the name given is the name of a design attribute field which will contain a list of
attribute fields to search for pins. I.e. this is equivalent to specifying a $SIGSOURCE or
$PINSIGSOURCE command for each field listed in the design attribute.

It is also valid to use these commands in conjunction with the regular $SIGSOURCE or
$PINSIGSOURCE commands. For example, your script could use $SIGSOURCE commands to
list the standard Power and Ground fields and then add the line:

$DESIGNSIGSOURCE &ExtraFields

to allow individual designers to add fields for their specific requirements. In this case, for
example, placing the value:

AnaGnd,AnaPlus12,AnaMinus12

in the design attribute ExtraFields would have the same effect as placing the following three
commands in the script file:

$SIGSOURCE &AnaGnd

$SIGSOURCE &AnaPlus12

$SIGSOURCE &AnaMinus12

Some additional notes on the usage of this command:

• In the current implementation of the $DESIGNSIGSOURCE command, there is no way to
specify one name for the attribute field and a different name for the net name that
appears in the netlist. This can only be done using the $SIGSOURCE command
explicitly for each name.

• The presence of a $DESIGNSIGSOURCE or $DESIGNPINSIGSOURCE command in
the script does not add any significant execution time overhead if no values are specified
in the given design attribute field. If a value is specified, the note given under the
$PINSIGSOURCE command will apply.

➢ See also: $SIGSOURCE $PINSIGSOURCE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 82/155

Keyword 48 $DEVCOUNT
Status

Synopsis $DEVCOUNT

Returns Decimal integer

Type Data

Where Top level

Description Returns the number of lines in the last $DEVICES listing. If $COMBDEVSON
has been set, this will mean in effect the number of different sort values in the
list.

Examples $COMBDEVSON
$SORT $DEVICES &Part
$DEVICES&Part $DEVNAME
Number of different part types: $DEVCOUNT

This will generate a simple bill of materials with one line per part type and a final
line indicating the number of different part types, i.e. the number of unique values
in the Part attribute field.

$DEVCOUNT is used to get a count of the number of devices on the scripter’s current device list.
It is only valid after one of the following types of statements has been executed:

$DEVICES

$FIND $DEVICES

$SORT $DEVICES

If a $SORT has been done and $COMBDEVSON has been set, $DEVCOUNT returns the
number of unique sort values in the devices list, otherwise it returns the number of devices in the
list. In other words, it returns the number of lines that would be generated by a $DEVICES listing.

For more information on sorting, see “Sorting and Merging” on page 23.

Keyword $DEVHIERNAME

Status

Synopsis $DEVHIERNAME

Returns Text

Type Data

Where Script – device

Description Returns the hierarchical name of the current device, i.e. the device name pre-
fixed with the names of any parent devices in the hierarchy. In Flat designs, this
is equivalent to $DEVNAME. This is not valid in Pure designs since there is no
unequivocal path from a given device to the top-level circuit.

Examples $DEVICES$DEVHIERNAME $PINS

This will generate a list of devices showing the hierarchical name of each fol-
lowed by a list of the attached pins.

$DEVHIERNAME is intended to provide a unique device identifier when generating flattened
netlists from hierarchical designs. Here are some important points to remember when using this
keyword:

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 83/155

The hierarchical name consists of the Name value for the current device with the "path" formed
by its parent devices prefixed to it, such as:

MEMBLK1/CONTROL/CTR2

The separator character that is used in generating these names can be set using the
$HIERNAMESEPARATOR command.

Hierarchical names can be arbitrarily long, depending on the nesting level. For this reason, they
may not be suitable as an identifier in many netlist formats.

➢ See also $HIERNAMESEPARATOR and “Script Hierarchy Issues” on page 32.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 84/155

Keyword 49 $DEVICES
Status

Synopsis $DEVICES formatItems

Returns Text

Type Data

Where Top level

Description Creates a listing of devices using the format items following on the line.

Examples $DEVICES$DEVNAME $PINS

This will generate a list of devices showing the name of each followed by
a list of the attached pins.

The $DEVICES keyword also appears as a modifier of the $FIND, $SORT, $ASSIGNNAMES,
$ASSIGNINSTNAMES and $BREAK commands. See the entries for those commands for more
information.

The $DEVICES command is the primary command for generating any listing by device. The
format of the listing is determined by the format items that follow the command on the line and by
the various definition options, as outlined here:

• The scope of the listing in hierarchical designs is affected by the $HIERARCHY
command.

• A subset of the devices in the design can be extracted using any desired criteria using
the $FIND command.

• The ordering of devices in the listing is affected by the $SORT command.

• If the $COMBDEVSON has been selected, multiple items with the same sort value will
appear on one line.

• The $NEWLINE format command can force multiple lines to be generated for each item.

• Limits on line length imposed by the $LINEWIDTH and $MAXITEMSPERLINE
commands may cause multiple lines to be generated.

• The format of the listing for each device or signal is completely determined by the text
and commands which follow the $DEVICES or $SIGNALS keyword. There is no default
format, so if no line format is specified, a sequence of blank lines will be written to the file.

• EMTPWorks "pseudo-devices" such as page connectors, signal connectors and bus
breakouts are normally not included in any listing.

• Any characters appearing after $DEVICES that is not part of a format sub-command will
be placed verbatim in each line of the listing. For example, blanks, tabs or commas can
be used to format each line.

Numerous data-generating commands can be used in defining the output generated on each line.
Any command listed in this Appendix with a "Where" value of "Script - Device", "Script - Circuit",
"Script - Any object" or "Script" can be used on a $DEVICES line. Some of the more common
format items are summarized in this table. See the corresponding keyword section for each item
for more information.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 85/155

$DEVNAME The name of the device.

$DEVSEQ The sequence number of the current device, i.e. an integer assigned to the
device, starting at "n" for the first device in the sorted sequence and
incremented for each subsequent one.

$TYPENAME The device's type name, that is, the name used to refer to this type in the
library.

$COUNT The number of devices being merged to form this line, i.e. the number having
the same sort value.

$SINGLE Tells the report generator to write only a single value for all items following on
the line, regardless of how many items were combined with the same sort
value.

$NUMPINS The number of pins on the device.

$PAGE The circuit page that this device appears on.

$PINS A list of the device's pins. The format of each item is determined by the
$DEVPINFORMAT command.

$COL(N) If the current position in a line is less than N spaces form the left hand end
then blanks are inserted until the Nth column is reached.

$NEWLINE Writes a new line character into the file. This allows a device entry to occupy
several lines in the output report.

&attr Inserts the value of the attribute field specified.

A variety of applications for the $DEVICES command are described in “Script Examples” on
page 44.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 86/155

Keyword 50 $DEVINSTNAME
Status

Synopsis $DEVINSTNAME

Returns Text

Type Data

Where Script - device

Description Returns the instance name of the current device, i.e. the contents of its InstName
attribute field. This field is normally used to hold the device package assignment
in Physical hierarchy mode designs.

Examples $DEVICES$DEVINSTNAME $PINS

This will generate a list of devices showing the instance name of each followed
by a list of the attached pins.

Keyword 51 $DEVLOC
Status

Synopsis $DEVLOC

Returns Text

Type Data

Where Script - device

Description Returns the hierarchical locator string for the current device.

Examples $DEVICES$DEVNAME $DEVLOC

The $DEVLOC command generates a unique identifier string referred to as a "locator". This can
be used to uniquely identify any device within a hierarchical design, even if some devices have
duplicate or null names. The locator is used by other EMTPWorks modules like ErrorScript to
locate objects unambiguously.

Keyword 52 $DEVNAME
Status

Synopsis $DEVNAME

Returns Text

Type Data

Where Script - device

Description Returns the name of the current device, i.e. the contents of its Name attribute
field.

Examples $DEVICES$DEVNAME $PINS

This will generate a list of devices showing the name of each followed by a list of
the attached pins.

In Flat mode PCB designs, $DEVNAME is normally used for the device package assignment. In
Physical and Pure mode hierarchical designs, $DEVNAME is the "reference designator", or a
logical name that is unique to each symbol within a circuit level, but not necessarily unique in the
entire design.

For more information on names in hierarchical designs, see $HIERARCHY on page 98.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 87/155

Keyword 53 $DEVPINFORMAT
Status

Synopsis $DEVPINFORMAT formatItems
$DEVPINFORMAT(formatItems)

Returns Text

Type Data

Where First form - Top level
Second form - Script - device

Description Sets the format that will be used for each pin output by the next $PINS command
in a $DEVICES line. The first form (without parentheses) can only be used on a
top-level line. The second form (with parentheses) can be used either on a top-
level line or in a $DEVICES line. This allows the format to be modified on the fly
while generating output for a single device. This is required in some netlist
formats that require a pin list header followed by a declaration list.

Examples $DEVPINFORMAT [$PINNAME,$PINNUM]
$ITEMSEPARATOR(,)
$DEVICES$DEVNAME $PINS

This will generate a list of devices showing the name of each followed by a list of
the attached pins using the format specified:
U1 [A,1],[B,2],[Q,3]

This command sets the format for pin lists (i.e. a $PINS command) appearing in a $DEVICES
listing. The default format is "$SIGNAME", meaning the signal name alone will appear for each
device pin.

Here are some notes on device pin formats:

• Leading and trailing blanks are always trimmed from the format list, but embedded blanks
(i.e. those surrounded by non-blank format items) are not. If you want a leading or
trailing blank in a format, it must be preceded by an escape character (backslash).

• Any literal text not recognized as a command or terminator will be placed in the format
verbatim.

• If you need to include parentheses in the pin format, they should be preceded by an
escape character to ensure that they are not interpreted as argument terminators.

• Any command that is valid for a device, signal, pin or design can be used in a pin format.

If an attribute reference appears in a pin format, there can be some ambiguity since it can refer to
a device, signal or pin. See “Precedence of Field References in Pin Listings” on page 18 for a
definition of the search order used by the Scripter in evaluating these references.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 88/155

Keyword 54 $DEVPINSEQUENCE
Status

Synopsis $DEVPINSEQUENCE &attrField

Returns N. A.

Type Definition

Where Top level

Description Sets an attribute field to be searched for a pin order specification while creating a
$PINS listing.

Examples $DEVPINSEQUENCE &PinSequence

This specifies that the standard field PinSequence is to be searched for a list of
pins to output.

Some design programs, such as SPICE-based simulators, require netlist formats in which the
device pin order is significant. Since there are no standards for pin order, different packages will
likely require different ordering schemes. In order to allow a variety of pin orderings to be stored
with each device type, the Scripter tool can be asked to search a device attribute field for pin
order information. The name of this field is specified in the $DEVPINSEQUENCE command, as
follows:

$DEVPINSEQUENCE &attrField

Once this field has been specified, if a $PINS sub-command is encountered in a $DEVICES
listing, each device is searched for an attribute field with the given name. If the field is found (in
the device instance or the type attributes), then it is assumed to contain a list of names of the pins
to write out to the file. The pin names must be listed exactly as they appear in the “Edit symbol”
option pin list, or, in the case of $SIGSOURCE pins, as the fields are named in the device
attributes. If the specified field is not found in a given device, then the normal pin ordering is
used.

For example, assume a 2-input gate has pins named A, B and OUT. A pin sequence attribute
field could be specified in the device (or in the library type attributes) as follows:

OUT,A,B

The command:

$DEVPINSEQUENCE &PinSequence

in the script would then cause subsequent listings of that device to have pins appear in the
specified order. The predefined field PinSequence is intended for this purpose.

➢ See also: $PINS

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 89/155

Keyword 55 $DEVSEQ
Status

Synopsis $DEVSEQ[(origin)]

Returns Decimal integer

Type Data

Where Script - device

Description Returns an integer indicating the position in the sort sequence of this device. If
the original is not specified, numbering starts at zero.

Examples $SORT $DEVICES $DEVNAME
$DEVICES$DEVSEQ(1). $DEVNAME

This will generate a listing of devices that looks something the following:
1. C1
2. C2
3. U1
4. U2

$DEVSEQ returns the sequence number of the current device, that is, an integer assigned to the
device, starting at "origin" for the first device in the sorted sequence and incremented for each
subsequent one. This number is not permanently associated with the device but it strictly its
sequence number in the current sort. The "(origin)" part is optional. If it is omitted the sequence
starts at zero. If no sort has been done, all devices will have the origin sequence number.

Keyword 56 $DEVTOKEN
Status

Synopsis $DEVTOKEN

Returns Decimal integer

Type Data

Where Script - device

Description Returns an integer representing the device’s token number.

Examples $DEVICES$DEVNAME $DEVTOKEN
This will generate a listing of devices with the name and token number of each.

Keyword 57 $DIRECTORY
Status See $FOLDER.

Synopsis $DIRECTORY(string)

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 90/155

Keyword 58 $DIV
Status

Synopsis $DIV(string1,string2)

Returns Decimal integer

Type Data

Where Script

Description Performs an integer division (first argument divided by second) and returns a
decimal string of the result. If the second argument is zero, an error message is
returned. All arithmetic is done with 32-bit signed values.

Example $SETVAR(Avg, $DIV(&Total, $COUNT))

Sets Avg variable value. It will be equal to (&Total/$COUNT)

➢ See also: $MINUS $MULT $PLUS

Keyword 59 $DWVERSION
Status

Synopsis $DWVERSION

Returns Text

Type Data

Where Script

Description Returns the version number of the EMTPWorks package it is running on.

Examples * Generated by EMTPWorks $DWVERSION

The keyword is used to insert the current EMTPWorks version number into output files for
documentation purposes.

Keyword 60 $ELSE
Status See $IF.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 91/155

Keyword 61 $EMTPPHASE
Status

Synopsis $EMTPPHASE

Returns Single character ’a’ (phase-A signal), ’b’ (phase-B signal), ‘c’ (phase-C signal),
‘3’ (3-phase signal), ’X’ (mismatch) or null when standard signal

Type Data

Where Script - Device, Pin or Signal

Description Provides an indication of the of power signal the object is associated with.

Example $IF($EQ($EMTPPHASE,3))$ALERT1(It’s 3-phase)$END

Keyword 62 $END
Status See $IF, $DEFINEBLOCK, $DEFINECIRCUIT, $HEADER

Keyword 63 $EQ
Status

Synopsis $EQ(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if they are
equal.

Example $IF($EQ($DATE($H),12))$ALERT1(Time for lunch.)$END

This is a numerical comparison, not a string comparison; for a string comparison, use $REGEXP.

➢ See also: $GE $GT $LE $LT $NE

Keyword 64 $ERRORBITOFF
Status

Synopsis $ERRORBITOFF(bitNum)

Returns Boolean

Type Data

Where Script - Any object

Description Tests if the given bit number in the binary error set represented in the object’s
"OKErrors" attribute field is off.

Examples $DEVICES$IF($AND($NOT($DEVNAME),$ERRORBITOFF(7)))Error$END

Will output the text "Error" for each device that has no name and for which bit 7
of the OKErrors field is 0.

This call is one of a set of commands designed to implement a "Mark as OK" feature in error
checking scripts. See the description of this feature in “Implementing Mark as OK in Error
Checking Scripts” on page 28.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 92/155

➢ See also $CLEARERRORBIT $ERRORBITON $SETERRORBIT

Keyword 65 $ERRORBITON
Status

Synopsis $ERRORBITON(bitNum)

Returns "1" if the given error bit is 1.

Type Data

Where Script - Any object

Description Tests if the given bit number in the binary error set represented in the object’s
"OKErrors" attribute field is on.

Examples $DEVICES$IF($ERRORBITON(7))$DEVNAME marked as OK!$END

Will output the device name and the given string for each device that has bit 7 of
the OKErrors field set.

This call is one of a set of commands designed to implement a "Mark as OK" feature in error
checking scripts. See the description of this feature in “Implementing Mark as OK in Error
Checking Scripts” on page 28.

➢ See also: $CLEARERRORBIT $ERRORBITOFF $SETERRORBIT

Keyword 66 $EVAL
Status

Synopsis $EVAL(string)

Returns The result of processing the argument string a second time for script commands.

Type Data

Where Script - Any object

Description Evaluates the argument string and then treats the result as a command string
and evaluates it again.

Examples $SYSTEMOPEN($EVAL(&ARG1))

Takes the contents of variable ARG1 (presumably, a parameter passed by an
outside invocation of the script) and re-evaluates it for commands. This allows
the parameter passed in to contain more script commands, such as
$DESIGNNAME. If $EVAL was not used here, the contents of the variable
would be passed literally to $SYSTEMOPEN.

This call is used for cases where you want to read a line of script commands from another source
and execute them as if they were part of the script.

➢ See also: $SYSTEMOPEN

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 93/155

Keyword 67 $FILEEXISTS
Status

Synopsis $FILEEXISTS(fileName)

Returns "1" if the given file exists, null otherwise.

Type Data

Where Script

Description This command is used to determine if a specified file exists on disk. The file
name can optionally include an absolute or relative directory path. If the directory
is not absolutely specified, it is relative to the "current directory", which is usually
the one containing the current design file.

Examples $IF($NOT($FILEEXISTS($DESIGNNAME.proj)))
$CREATEREPORT($DESIGNNAME.proj)
Project file for $DESIGNNAME, created $DATE
$CLOSEREPORT
$END

➢ See also: $FOLDER $DESIGNPATH $SCRIPTPATH $TEMPPATH $PROGPATH, and “File

Names and Paths” on page 37.

Keyword 68 $FILENAME
Status

Synopsis $FILENAME

Returns Text

Type Data

Where Script – design

Description Returns the name of the current design’s file. If the current design has never
been saved to a file, this will be the name of the design window.

Examples This report was generated from $FILENAME

➢ See also: $DESIGNNAME

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 94/155

Keyword 69 $FIND
Status

Synopsis $FIND [$NOCLEAR] $DEVICES|$SIGNALS[criterion1][criterion2]...

Returns N. A.

Type Definition

Where Top level - design

Description Scans through the list of devices or signals in the current circuit or design to
locate objects meeting the given criteria. After this command has executed,
subsequent commands dealing with the same object type will see only the
selected objects.

Examples $FIND $DEVICES $NOT($DEVNAME)

This will locate all devices having no name, i.e. a null "Name" field.

This command is one of the most important and powerful ones in the scripting language. It allows
you to selectively include or omit objects from consideration based on almost any criteria. For
example, you can use it to locate:

• Devices of a certain type that require special formatting in a Netlist. E.g. Sub-circuit
devices in a SPICE file.

• Devices whose pins meet some error condition (e.g. duplicate pin numbers)

• Only signals that have two or more pin connections for netlisting.

• Special device symbols that are used to mark the schematic or pass special parameters
to an external system.

• Port connectors that will be used to defined a sub-circuit header in a hierarchical netlist.

In order to implement the $DEVICES and $SIGNALS commands, the Scripter keeps two internal
lists, one for devices and one for signals. In hierarchical designs, these lists may be derived from
a single sub-circuit, or from a flattened view of the whole design, depending on the hierarchy
mode. For the sake of further discussion, we will assume we are dealing with a single circuit.

If no $FIND has been done, the $SIGNALS command will by default operate on all the signals in
the circuit, and the $DEVICES command will operate on all non-pseudo- devices in the circuit.
The $FIND command normally starts by creating a new list of all the objects in the circuit. It then
runs down this list and evaluates the first "criterion" item on the line for each object on the list. If
the criterion produces any non-null string, the object is kept on the list. This process is repeated
by running down the resulting list and evaluating the next criterion for each remaining object.

Once a $FIND has been done, any objects not on the list are gone as far as subsequent script
operations are concerned. Device, signal and pin listings will show only selected objects.

If you have finished with a given selection of devices or signals and want to restore future listings
to work on the full set of objects, you can simply do a $FIND with no criteria:

$FIND $DEVICES

or

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 95/155

$FIND $SIGNALS

Using the $NOCLEAR Option

In some cases, you may want to use some property of a sorted list of objects as a find criterion.
An example is finding all cases of two objects having the same value in an attribute field. The
way to implement such a search is to sort the list by that value, turn on the merging feature
($COMBDEVSON/$COMBSIGSON) and count how many objects get grouped together.

However, this is not normally possible, since $FIND normally starts by creating a new list derived
directly from the design. This destroys any sorting of the existing list. The $NOCLEAR option
solves this by overriding this behavior. Note that this option must appear immediately after $FIND
on the command line.

With $NOCLEAR specified, $FIND skips the extraction of a new list and operates on any existing
list of objects, in the order that it is currently sorted. This way, you can use the sort as a source of
data for the $FIND. This is illustrated in the following example:

$COMBSIGSON

$SORT $SIGNALS $SIGNAME

$FIND $NOCLEAR $SIGNALS $GE($COUNT,2)

$CHECK(Duplicate signals found) $SIGNALS

In this case we sort the signals by name, then use the $COUNT function to tell use when we have
two or more objects merged together. If $NOCLEAR was not specified, the sorted order would
be lost and $COUNT would be meaningless.

See also: $SORT $COMBDEVSON/$COMBDEVSOFF $COMBSIGSON/$COMBSIGSOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 96/155

Keyword 70 $FOLDER
Status

Synopsis $FOLDER(string)

Returns N. A.

Type Definition

Where Top level

Description Used to Specify the default directory for use by design-related file commands,
such as $OPENDESIGN, $CREATEDIRECTORY and $CREATEREPORT. The
path set by this command will be returned by the $PROGPATH command.

Example $FOLDER(C:\\Program Files\\EMTPWorks\\)
$CREATEREPORT($PROGPATH\myreportfile.txt)

This command does not interpret commands or variable references in the given string. All
characters are used verbatim.

A synonym for this command is $DIRECTORY.

➢ See also: $PROGPATH

Keyword 71 $FULLPATH
Status

Synopsis $FULLPATH(string)

Returns Text

Type Data

Where Script

Description Converts the given directory path name to an absolute path starting with the disk
name.

Example $FULLPATH(&Dir)

This command is primarily intended to assist in making scripts that are coded only with relative
path names for portability while still allowing the generation of full path names for outside
processes that require them.

The absolute path name that is generated will use the root directory that contains the current
directory as its origin.

See more information about root directories under “File Names and Paths” on page 37.

➢ See also: $FOLDER $DESIGNPATH $SCRIPTPATH $TEMPPATH $PROGPATH

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 97/155

Keyword 72 $GE
Status

Synopsis $GE(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if the first
is greater than or equal to the second.

Example $IF($GE(&ErrCnt, 1))$ALERT1(&ErrCnt errors!)$END

This is a numerical comparison, not a string comparison. The comparison is done using signed
32-bit arithmetic.

➢ See also: $EQ $GT $LE $LT $NE

Keyword 73 $GRID
Status

Synopsis $GRID

Returns Text

Type Data

Where Script - any object

Description Returns a text representation of the location of the object in the drawing grid of
the page it is on. For example, an item in the top left corner of a sheet using the
default grid layout would return "A1". The results of this command are affected
by the setup for the sheet.

Example $DEVICES$DEVNAME &Part $PAGE-$GRID
This will list devices showing their page and grid location in the schematic.

Keyword 74 $GT
Status

Synopsis $GT(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if the first
is greater than the second.

Example $IF($GT(&CurDate, &UpdateDate))Time to update!$END

This is a numerical comparison, not a string comparison. The comparison is done using signed
32-bit arithmetic.

➢ See also: $EQ $GE $LE $LT $NE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 98/155

Keyword 75 $HEADER
Status

Synopsis $HEADER

Returns N. A.

Type Definition

Where Top level

Description Defines a block of text to be output whenever a page break occurs.

Example $LINESUSED(30)
$PAGELENGTH(35)
$HEADER
Bill of Materials for $DESIGNNAME, page $PAGE

$END

The specified text (with appropriate command and variable substitutions) will be
output each time the current line count exceeds the $LINEUSED setting.

➢ See also “Controlling Report Page Layout” on page 20.

Keyword 76 $HEX
Status

Synopsis $HEX(string)

Returns Hexadecimal integer

Type Data

Where Script

Description Performs a hexadecimal conversion on the argument. The conversion is done
using signed 32-bit arithmetic.

Example $DEVICES$DEVNAME $HEX(&DateStamp.Dev)

Keyword 77 $HIERARCHY
Status

Synopsis $HIERARCHY $FLATDOWN | $FLAT | $CIRCUIT | $TOPCIRCUIT |
$PUREDOWN | $PURE

Returns N. A.

Type Definition

Where Top level

Description Sets the hierarchy mode for the netlist.

Example $HIERARCHY $FLAT

This specifies that we want to generate a flattened netlist of the entire design, i.e.
starting at the topmost circuit level.

The $HIERARCHY command specifies the hierarchical scope of subsequent $DEVICES and
$SIGNALS listings and also the type of netlist that will be generated. The scope can be one of:

$CIRCUIT The current circuit only, i.e. the one in the active schematic window.
This is the default mode if $HIERARCHY is not specified in a script.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 99/155

$TOPCIRCUIT The topmost circuit in the current design, regardless of which window
is active.

$FLAT/$PURE All unrestricted circuit levels in the current design.

$FLATDOWN/
$PUREDOWN

All unrestricted circuit levels from the current circuit (the one n the
active schematic window) and down.

Netlists that involve more than one circuit level can also be selected to be FLAT or PURE. The
options $CIRCUIT and $TOPCIRCUIT only deal with a single circuit level and will be flat by
definition. Options $FLAT and $FLATDOWN generate a "flattened" netlist, that is, one that
substitutes the contents of a subcircuit for its parent symbol so that it appears to have been
generated from a logically equivalent flat design. Options $PURE and $PUREDOWN generate
"hierarchical" netlists, i.e. where each internal circuit is defined as a separate netlist and is
defined only once.

There are numerous formatting issues in generating netlists from hierarchical designs. These are
described in more detail in “Script Hierarchy Issues” on page 32.

Keyword 78 $HIERNAMESEPARATOR
Status

Synopsis $HIERNAMESEPARATOR(character)

Returns N. A.

Type Definition

Where Top level

Description Sets the name separator character used in generating $DEVHIERNAME and
$SIGHIERNAME. The default is a slash "/".

Example $HIERNAMESEPARATOR(_)

This specifies that we want to generate hierarchical names using an underscore
as a separator character. For example "DEV1_GATE1_Q12" or
"BLK4_INBUF1".

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 100/155

Keyword 79 $IF
Status

Synopsis $IF(conditionString)trueString[$ELSEfalseString]$END
$IF(conditionString)
trueCommands
$END
$IF(conditionString)
trueCommands
$ELSE
falseCommands
$END

Returns N. A.

Type Definition

Where First form – Script
Second and third forms - Top level

Description Provides a mechanism for conditionally including or executing strings. If
conditionString is non-null, then trueString is evaluated and included in the
output, otherwise falseString (if specified) is used.

Example $IF(&Value),&Value$END

This example will add a comma and a value to the output line only if the value
exists. I.e. This ensures that no comma is output if there is no value.

The $IF command provides a powerful mechanism to control the format of output and the
execution of commands based on text data in the design.

The $IF command can be used in either of two forms. The single-line form can be used
anywhere and requires that the $IF and its matching $END (and the $ELSE, if used) be all on one
line. For example:

$DEVPINFORMAT $IF($NOT($PINNUM))$SETVAR(Errs, 1)$END

The other form of $IF requires all parts to be on top-level lines, for example:

$IF(&Errs)

$NULL($ALERT1(Errors were detected))

$ELSE

$NULL($ALERT1(The circuit is clean!))

$END

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 101/155

Keyword 80 $INCLUDE
Status

Synopsis $INCLUDE $BLOCK(blockName)[$RAW]
$INCLUDE[(fileNameString)|$PROMPT[(promptStr)]] [$RAW]
$INCLUDE[(fileNameString)|$PROMPT[(promptStr)]] $EXECUTE(blockName)

Returns N. A.

Type Definition

Where Top level

Description Implements several mechanisms for reading and interpreting text from an
external text file or from a block delimited within the script.

Example $INCLUDE $PROMPT(Select the vector file) $RAW
This line will prompt the user to locate a text file which will then be copied
verbatim to the output file.

The $INCLUDE command is used for several different functions, all related to reading text either
from an external file or from a block defined within the script.

Including a Named Block

The first form noted above in effect replaces the line containing the $INCLUDE with the contents
of the named block. If the $RAW option is used, this line has the effect of copying the contents of
the block directly to the output file. No processing is done on the contents of the block, other than
looking for the $END line.

If the $RAW option is not used then the contents of the block are interpreted line by line as if they
had been substituted for the $INCLUDE line itself. This could be thought of as being a sort of
subroutine call and is intended to be used similarly. It is useful for cases where the same set of
script lines could be repeated at several points.

Including an External File

The second form shown above is similar to the first except that an external text file is read.
Again, the $RAW option determines whether the contents of the file are interpreted as script
commands or simply copied to the output.

There are two ways to specify the file to be read. If a name is included in parentheses after
$INCLUDE, then that is taken as the file to read. The file is read from the current directory, which
will be the one the current design is located in, unless it has been changed. Note that the file
name specification can contain literal text and commands that refer to the current design, such as
in the following examples:

$INCLUDE($DESIGNNAME.hdr) $RAW

$INCLUDE(&ModelFile) $RAW

$INCLUDE($IF(&HdrFile)&HdrFile$ELSE\Default Header$END)

A $PROMPT option allows you to prompt the user to select a file and optionally specify the text
that will appear at the top of the file open box. For example:

$INCLUDE $PROMPT(Please select the test vector file) $RAW

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 102/155

Using an External File as Data

The third form of $INCLUDE allows you to read a file line by line and use the contents as data to
be interpreted using script commands, rather than as script commands itself. This facility is
intended to be used in conjunction with the $REGEXP regular expression command to implement
various types of back annotation or file conversion.

When the $EXECUTE option is added, the specified block of script commands is executed once
for each line in the file. While the block is being executed, the $TEXTLINE keyword represents
the contents of the line. For example, the following script assumes that a file contains a list of
device names, one per line. It will display an alert box for every name that is in the file but is not
found in the design.

$DEFINEBLOCK(FindBlk)

$FIND $DEVICES $EQ($DEVNAME,$TEXTLINE)

$IF($EQ($DEVCOUNT,0))

$NULL($ALERT1(Missing device $TEXTLINE))

$END

$INCLUDE(Device List) $EXECUTE(FindBlk)

To show how you might use a regular expression to extract an old and new name from a file,
consider the following simple back annotation:

$REPORTOFF

$DEFINEBLOCK(FindBlk)

$IF($NOT($REGEXP((\S+)\s+(\S+), $TEXTLINE)))

 $ALERT1(Bad file format at $TEXTLINE)

$ELSE

 $FIND $DEVICES $EQ($DEVNAME,&1)

 $IF($EQ($DEVCOUNT,0))

 $ALERT1(Missing device &1)

 $ELSE

 $DEVICES$SETATTR(Name, &2)

 $END

$END

$END

$INCLUDE(Device List) $EXECUTE(FindBlk)

This simple script assumes that changes are to be applied sequentially, i.e. each line assumes
that the previous line’s change has been implemented in the design. Some back annotation
formats specify all "old names" in the first column and all "new names" in the second. Make sure
you know which form is required before using this type of script.

This type of script can make major changes to the data in a design and is not Undoable. It is best
to warn the user prominently before proceeding with such drastic changes.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 103/155

Keyword 81 $INCLUDEPORTSON/$INCLUDEPORTSOFF
Status

Synopsis $INCLUDEPORTSON
$INCLUDEPORTSOFF

Returns N. A.

Type Definition

Where Top level

Description Determines whether Port Connectors are treated as devices for the purposes of
netlisting. If ON, port connectors will appear in the list along with all other
devices. If OFF (the default), port connectors will not be listed.

Example $INCLUDEPORTSON

Port connectors are used in hierarchical designs to link signals in a sub-circuit to a pin on the
parent device symbol. Port connector symbols are pseudo-devices and so do not normally
appear in any output generated by the Scripter tool, although their connectivity effect is of course
taken into account in generating netlists. For some types of reports, however, it is useful to
create a list of a circuit's ports, for example, to generate an interface listing for a circuit. Including
the keyword $INCLUDEPORTSON prior to performing any listing or searching commands will
cause port connectors and their pins to be listed as if they were normal devices.

➢ See also: $ISPORT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 104/155

Keyword 82 $INLINE
Status

Synopsis $INLINE(blockName)

Returns Text

Type Data

Where Script

Description This command is a formatting convenience that allows script commands that
normally have to be included on one line to be written out on sequential lines.

Example $DEFINEBLOCK(DevItems)
 $IF($NOT($REGEXP(\w+, $DEVNAME)))
 $IF($NOT($ALERT2(Name error in $DEVNAME)))
 $ABORT
 $END
 $END
$END
$DEVICES$INLINE(DevItems)

This script will behave exactly the same as if the contents of the block were
strung together on one line with no line breaks and white space between the
items.

This command is a convenience used to overcome the formatting restriction that commands like
$DEVICES or $SIGPINFORMAT must fit on one line. The contents of the block are interpreted
as if they existed in place of the $INLINE keyword, except that all line breaks and leading and
trailing white spaces are ignored.

$INLINE is intended for use in cases where a $DEVICES or $SIGNALS line or a pin format
specification requires a complex sequence of commands that will not fit conveniently on one line.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 105/155

Keyword 83 $INTERNAL
Status .

Synopsis $INTERNAL[(blockName)]

Returns Text

Type Data

Where Script - device

Description Causes the internal circuit or the current device (if any) to be output. If no block
name is provided, the format for the subcircuit netlist must have been defined in
a $DEFINECIRCUIT block. If a block name is provided, any block defined in a
$DEFINEBLOCK can be used.

Example $HIERARCHY $PURE
$DEFINEBLOCK(SubCctBlk)
$SORT $DEVICES $DEVNAME
$DEVICES$DEVNAME $PINS
$END
$DEVICES$INTERNAL(SubCctBlk)

This will generate a device pin listing for each subcircuit in the design.

See keywords $DEFINECIRCUIT $DEFINEBLOCK $HIERARCHY, and the general description of
hierarchical netlists in “Script Hierarchy Issues” on page 32.

Keyword 84 $ISPORT
Status

Synopsis $ISPORT

Returns Boolean

Type Data

Where Script - device or pin

Description Returns TRUE ("1") if the current device is a port connector or is the current pin
is a pin on a port connector, FALSE (null string) otherwise.

Example $INCLUDEPORTSON
$FIND $DEVICES $ISPORT
$DEVICES\PORT $DEVNAME

This will generate a listing of ports like the following:
PORT IN1
PORT IN2
PORT CLK

➢ See also $INCLUDEPORTSON/$INCLUDEPORTSOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 106/155

Keyword 85 $ISUNCONNPIN
Status .

Synopsis $ISUNCONNPIN

Returns Boolean

Type Data

Where Script - pin or signal

Description Returns TRUE ("1") if the current pin is unconnected, that is, it has no visible
signal lines or name associated with it on the schematic, FALSE (null string)
otherwise.

Example $FIND $SIGNALS $ISUNCONNPIN
$SIGNALS$SIGNAME is unconnected!

This will generate a simple error report of unnconnected pins.

Keyword 86 $ITEMSEPARATOR
Status .

Synopsis $ITEMSEPARATOR(string)

Returns N. A.

Type Definition

Where Top level

Description Sets the string of characters to be inserted between items in a repeating list, i.e.
$PINS or multiple-valued items.

Example $ITEMSEPARATOR(,)
$DEVICES$DEVNAME $PINS

This will generate a listing of devices with the pins separated by commas.

➢ See also $PINS and “Enabling Merging” on page 25.

Keyword 87 $LE
Status

Synopsis $LE(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if the first
is less than or equal to the second.

Example $IF($LE(&UpdateDate, &CurDate))Time to update!$END

This is a numerical comparison, not a string comparison. The comparison is done using signed
32-bit arithmetic.

➢ See also: $EQ $GE $GT $LT $NE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 107/155

Keyword 88 $LINESUSED
Status

Synopsis $LINESUSED(number)

Returns N.A.

Type Definition

Where Top level

Description Sets the number of lines to put on a page before writing out a page header. The
actual length of the page is specified by PAGELENGTH above. The default
value is 32767, that is, page breaks are disabled.

Example $LINESUSED(60)

➢ See also: $HEADER $PAGELENGTH

Keyword 89 $LINEWIDTH
Status

Synopsis $LINEWIDTH(n)

Returns N. A.

Type Definition

Where Top level

Description Sets the maximum number of characters that will be output on one line by a
repeating data item before a line break is inserted.

Examples $LINEWIDTH(80)

Sets the maximum width of a line to 80 characters.

This command only affects repeating items such as $PINS or merged data items, so it does not
guarantee that no line will be longer than the specified amount. For example, consider the simple
script:

$LINEWIDTH(20)

$DEVICES$DEVNAME &Part

In this case, the $LINEWIDTH will have no effect because no repeating or multiple-value data
item is present. If the total width of the device name, &Part and the separating blank add up to
more than 20 characters, they will be simply output with no change.

More information on multiple value items in merged lists is given in “Enabling Merging” on
page 25.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 108/155

Keyword 90 $LOWERCASE
Status

Synopsis $LOWERCASE(string)

Returns String

Type Data

Where Script

Description Converts all alphabetic characters in the argument to lower case. Non-alpha-
betic characters are not changed..

Example $LOWERCASE($DEVNAME)

See also: $UPPERCASE

Keyword 91 $LT
Status

Synopsis $LT(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if the first
is less than the second.

Example $IF($LT(&UpdateDate, &CurDate))Time to update!$END

This is a numerical comparison, not a string comparison. The comparison is done using signed
32-bit arithmetic.

➢ See also: $EQ $GE $GT $LE $NE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 109/155

Keyword 92 $MAP
Status

Synopsis $MAP(blockName, string)

Returns Text

Type Data

Where Script

Description Used to map string values using a predefined table.

Example $DEFINEBLOCK(PkgTable)
DIP14 D14-300
DIP16 D16-300
DIP20 D20-300
$END
$DEVICES$DEVNAME &Part $MAP(PkgTable, &Package)

This will output for each device the name, part name and a package code
determined by locating the contents of &Package in the first column and out-
putting the corresponding contents of the second column. Note that the white
space shown in this example is representing a single tab character. Blanks do
not count as separators and may be included in the values.

This command allows you to map string values by looking them up in a table. This can allow you
to translate data in a design that was intended for one usage to a suitable format for a different
system. For example, every PCB layout package uses a different set of package codes to select
a PCB footprint for a part. The $MAP command allows you to generate output for a different PCB
package than that for which the design was originally created, without making any manual
modifications to the codes in the design.

Note that the $VERIFY command uses the same table format but returns only TRUE ("1") or
FALSE (null) to indicate if a given value is present in the table. This can be used for error
checking when the actual mapped value is not needed, or may be null.

Mapping Table Format for $MAP, $CHARMAP and $VERIFY

The mapping table used by the $MAP, $CHARMAP and $VERIFY commands is placed in a script
block, i.e. the first line must be $DEFINEBLOCK(name) and the last line must be $END. Note
that care must be taken not to include any mapping values that start with a $ in the first column or
contain any tab characters, as this might confuse the script parser. If it is necessary to use such
a value, the $ or tab must be preceeded with an escape (backslash) character.

The mapping table consists simply of zero or more lines of text. Each line consists of a match
string followed optionally by a tab character and a new value string. The new value string is not
used by $VERIFY and will be ignored if present. The match string must consist of exactly a
single character for the $CHARMAP command. If the new value string is not present, $MAP or
$CHARMAP will return a null string if it matches the match string. The mapping function
searches the strings in the order provided and stops as soon as it finds a match. No checking is
done for duplicate values.

Note the following important features of this format:

• The only valid separator character between columns is a tab. Blanks are not considered
a separator and may be part of either the match value or the new value string.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 110/155

• The values provided for both the match string and the new value string are literal text, not
script commands. Text that looks like a script command, like "&Package" will be taken as
literal text exactly as shown and will not be substituted with the value of the Package
attribute. More complex matches can be done using regular expressions and other
features by using the $TABLE command, but execution will be much slower.

➢ See also: $CHARMAP $VERIFY

Keyword 93 $MAXITEMSPERLINE
Status

Synopsis $MAXITEMSPERLINE(numString)

Returns N. A..

Type Definition

Where Script

Description Specifies the maximum number of items that will be placed on one line by
repeating commands such as $PINS.

Example $DEVPINFORMAT PIN,$PINNAME,$PINNUM
$MAXITEMSPERLINE(1)
$DEVICES\DEVICE,$DEVNAME$NEWLINE$PINS

This will generate a listing like the following:
DEVICE,U1
PIN,A,1
PIN,B,2
PIN,X,3
PIN,Ground,7
PIN,Power,14

This command is used to limit the number of items that will be placed on one line by any
repeating command. It is most often used to format pin entries generated by a $PINS command,
but it also affects any item that is repeated due to a merge operation.

➢ See also: Sorting and Merging on page “Sorting and Merging” on page 23 and $PINS.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 111/155

Keyword 94 $MERGE
Status

Synopsis $MERGE

Returns N.A.

Type Definition

Where Script - In $DEVICES or $SIGNALS line.

Description Indicates that all values for objects merged on this line should be output for the
next printing item on the line.

Example $SORT $DEVICES $TYPENAME
$COMBDEVSON
$DEVICES$SETATTR(OtherDevs, $MERGE$DEVNAME)
In this case, if $MERGE was not specified, the $SETATTR command would be
iterated at the top level, but the calculation of $DEVNAME would be done
separately for each device. $MERGE indicates that we want the values of all
devices merged in the calculation of the argument to $SETATTR.

This command is used to override the default behaviour when creating an argument string in a
sorted listing. In an example of the type shown above, the device list has been sorted by one
field, in this case the type name. Since "$COMBDEVSON" has been specified, all devices with
the same sort value (type name in this case) will be merged onto one line. Normally, any
keyword at the "top level" of that line (i.e. not an argument to any other command) will be iterated
for all the objects represented by that line. On the other hand, commands that are arguments to
other commands will only return the value of the specific device being processed at that point. In
other words, the iterating is performed on the top- level results of a command, not on its
arguments.

In some cases, it is desired to generate a value based on all the objects merged on a line and
pass it to another command. The $MERGE keyword indicates that the next data keyword should
be used as many times as necessary for all objects on the line.

In summary, on the top level of a $DEVICES or $SIGNALS line, $MERGE is the default behavior
and it can be overridden by specifying $SINGLE. When calculating an argument to any other
command, $SINGLE is the default behaviour and it can be overridden by specifying $MERGE.

➢ See also: $SINGLE $SORT $COMBDEVSON/$COMBDEVSOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 112/155

Keyword 95 $MINUS
Status

Synopsis $MINUS(string1,string2)

Returns Decimal integer

Type Data

Where Script

Description Performs an integer subtraction and returns a decimal string equivalent of the
numerical value of the second argument subtracted from the first. The operation
is performed with 32-bit signed integers.

Example $SETVAR(Count, $MINUS(&Count, 1))

➢ See also: $DIV $MULT $PLUS

Keyword 96 $MULT
Status

Synopsis $MULT(string1,string2)

Returns Decimal integer

Type Data

Where Script

Description Performs an integer multiplication and returns a decimal string of the result.

Example $SETVAR(Total, $MULT($COUNT, &PerUnit))

➢ See also: $DIV $MINUS $PLUS

Keyword 97 $NE
Status

Synopsis $NE(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs an integer conversion on both arguments and returns TRUE if they are
unequal.

Example $IF($NE(&COUNT1, 1))Error: Should have exactly one.$END

This is a numerical comparison, not a string comparison. For example, "1" and "001" will be
equal.

➢ See also: $EQ $GE $GT $LE $LT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 113/155

Keyword 98 $NEWLINE
Status

Synopsis $NEWLINE

Returns Text

Type Data

Where Script

Description Inserts a line break into the output.

Example $DEVICES\Device $DEVNAME$NEWLINE\Type $TYPENAME

This script will generate two lines per device as in the following example:

Device RLC1
Type RLC

Keyword 99 $NEWPAGE
Status

Synopsis $NEWPAGE

Returns N. A.

Type Action

Where Top level

Description Inserts a page break into the output.

Example $NEWPAGE

The $NEWPAGE command causes these actions to be taken:

If the current page length setting is zero, an ASCII form feed character is written to the output file.

If the current page length setting is greater than zero and the current line count has already
exceeded this setting, a single line terminator is written.

If the current page length setting is greater than zero and the current line count is less than this
value, then line terminators are written until the page length is reached.

In all cases, if any header has been specified in a $HEADER section, it is written out.

➢ See also: $HEADER $PAGELENGTH and “Controlling Report Page Layout” on page 20.

Although this looks similar to $NEWLINE, it can only be used on a top-level line and does not
return a value that can be used as an argument to another command.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 114/155

Keyword 100 $NONBLANK
Status

Synopsis $NONBLANK(string)

Returns Boolean

Type Data

Where Script

Description Returns TRUE if the given string contains any non-blank characters, FALSE
otherwise. Allows you to treat a string of blanks as a "FALSE" value.

Example $DEVPINFORMAT $IF($NOT($PINNUM))Error!$END
$DEVICES$IF($NONBLANK($PINS))$ALERT1(Err in $DEVNAME)$END

This script will put up an alert box if any empty pin numbers are found.
$NONBLANK is needed in this case because $PINS inserts a default blank
separator between each pair of pin entries.

Keyword 101 $NOT
Status

Synopsis $NOT(string)

Returns Boolean

Type Data

Where Script

Description Performs a Boolean inversion on the argument.

Example $IF($NOT($ALERT2(OK to continue?)))$ABORT$END

Another, obsolete form of $NOT is supported for compatibility with 3.x report forms. In a $FIND
line, $NOT inverts the meaning of the next item on the line, as in:

$FIND $DEVICES $NOT $DEVNAME

to find unnamed devices. In this version it is preferred to write this as:

$FIND $DEVICES $NOT($DEVNAME)

for consistency.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 115/155

Keyword 102 $NOTES
Status

Synopsis $NOTES
text
$END

Returns N. A.

Type Definition

Where Top level

Description Defines a block of text to be displayed to the script user when the "Format Notes"
command is selected. This text has no effect on the script output or action.

Example $NOTES
The script generates a netlist for Acme PCB.
$END

Notes are not the same as comments (enclosed in "{}"). Notes in a $NOTES section are
specifically intended to give the user information about the usage of the script, required attribute
fields, etc.

Keyword 103 $NULL
Status

Synopsis $NULL(string)

Returns N. A.

Type Definition

Where Script

Description Discards the value of the argument string.

Example $NULL($ALERT1(We’re still working!))

This command in effect converts any data command into a defintion command, eliminating any
output from it and eliminating a line terminator that would normally be inserted if it appeared by
itself on a line. This is used when it is desired to execute a command for its action, but the value
is not wanted in the output.

Keyword 104 $NUMINPS
Status

Synopsis $NUMINPS

Returns Decimal integer

Type Data

Where Script - device

Description Returns the number of pins on the device that are defined as INPUT. This is
strictly a count of pins defined on the symbol and does not include SIGSOURCE
pins and is not summed when multiple symbols are combined onto one line.

Example $DEVICES$DEVNAME $NUMINPS->$NUMOUTS

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 116/155

Keyword 105 $NUMOUTS
Status

Synopsis $NUMOUTS

Returns Decimal integer

Type Data

Where Script - device

Description Returns the number of pins on the device that are defined as OUTPUT or
POWER. This is strictly a count of pins defined on the symbol and does not
include SIGSOURCE pins and is not summed when multiple symbols are
combined onto one line.

Example $DEVICES$DEVNAME $NUMINPS->$NUMOUTS

Keyword 106 $NUMPINS
Status

Synopsis $NUMPINS

Returns Decimal integer

Type Data

Where Script - device

Description Returns the number of pins that would be output by a $PINS command on the
current device. This includes all devices merged on the current report line and
all SIGSOURCE pins.

Example $DEVICES$DEVNAME $NUMPINS$NEWLINE$PINS

Keyword 107 $NUMEMTPPINS
Status

Synopsis $NUMEMTPPINS

Returns Decimal integer

Type Data

Where Script – device

Description Returns the real number of pins on the device. I.e. a 3-phased pin returns 3
EMTP pins.

Example $DEVICES$DEVNAME $NUMPINS$NUMEMTPPINS$PINS

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 117/155

Keyword 108 $ONEPINSON/ONEPINSOFF
Status

Synopsis $ONEPINSON

Returns N. A.

Type Definition

Where Top level

Description When ON suppresses the pin number from being printed in netlist entries for
devices with only one pin. This will cause entries such as test points to appear as
TP1 instead of TP1-1. Default is OFF.

Example $ONEPINSON

Keyword 109 $OR
Status

Synopsis $OR(string1,string2)

Returns Boolean

Type Data

Where Script

Description Performs a logical OR operation on its two arguments. Any non-null string in an
argument is considered TRUE.

Example $IF($OR(&X1, &X2))&X1/&X2$ELSE\No data$END

Keyword 110 $PAGE
Status

Synopsis $PAGE

Returns Decimal integer

Type Data

Where Script

Description This command has one of two meanings, depending on context. If used in the
context of a device, signal or pin, it refers to the schematic page the object is
located on. If it is used in a header, it refers to the page number of the report
output.

Example $DEVICES$DEVNAME $PAGE-$GRID

➢ See also: $REPORTPAGE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 118/155

Keyword 111 $PAGELENGTH
Status

Synopsis $PAGELENGTH(numLines)

Returns N. A.

Type Definition

Where Top level

Description This command specifies the total number of lines that make up a page, that is,
the number of lines actually used plus the number of blank lines between pages.
If this is set to zero, a page break generates a form feed character in the output.
The default value is 66.

Example $PAGELENGTH(10)

➢ See also $LINESUSED $NEWPAGE and “Controlling Report Page Layout” on page 20.

Keyword 112 $PARENTPIN
Status

Synopsis $PARENTPIN(string)

Returns String

Type Data

Where Script - Pin

Description Generates a string by evaluating the arguments as if the parent pin was the
current pin. Used to extract information about the pin on the parent symbol
associated with a pin on a port connector in a subcircuit.

Example $INCLUDEPORTSON
$FIND $DEVICES $ISPORT
$DEVPINFORMAT $IF($NOT($PARENTPIN($PINNAME)))No -match!$END
$DEVICES$PINS

This will generate the string "No match" for each pin for which there is no
matching parent pin.

This command allows you to get information about the pin on a parent symbol that is associated
with a port connector in a hierarchical design. This is intended to be used to generate a port list
for a hierarchical Netlist, or for port-to-pin error checking.

The string passed to $PARENTPIN may contain commands that extract data from the parent pin
itself or the parent device itself.

The information that can be extracted using this command is limited to data associated directly
with the pin itself or the parent device itself. The attached signal, other pins attached to the same
pin, etc. are not available.

If the current pin is not a port or has no associated parent pin, this function will return null.

➢ See also: $ISPORT $INCLUDEPORTSON/$INCLUDEPORTSOFF

Keyword 113 $PINDIR
Status

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 119/155

Synopsis $PINDIR

Returns Text

Type Data

Where Script – pin

Description Returns a string representing the direction the pin is facing on the schematic.

Examples $DEVPINFORMAT $PINNAME-$PINDIR

$PINDIR returns a two-character code representing the orientation of the current pin, as shown in
the following table:

Output String Direction
E1 East
N1 North
W1 West
S1 South

These codes cannot be modified, although you could make use of the $MAP function to translate
them to another format.

Keyword 114 $PINNAME
Status

Synopsis $PINNAME

Returns Text

Type Data

Where Script – pin

Description Returns the pin name associated with the current pin, i.e. as it would appear in
the “Edit symbol” option pin list. If the current pin is an automatically-generated
SIGSOURCE pin, the name of the associated signal is returned.

Examples $DEVPINFORMAT $PINNAME-$PINNUM

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 120/155

Keyword 115 $PINNUM
Status

Synopsis $PINNUM

Returns Text

Type Data

Where Script – pin

Description Returns the pin number associated with the current pin. If the current pin is an
automatically-generated SIGSOURCE pin, the number specified in the SIG-
SOURCE attribute is returned.

Examples $DEVPINFORMAT $PINNAME-$PINNUM

Keyword 116 $PINS
Status

Synopsis $PINS
$PINS(n)
$PINS(m..)
$PINS(m..n)
$PINS(&attrField)

Returns Text

Type Data

Where Script - device or signal

Description Returns a list of the pins associated with the current device or signal. The
optional argument forms shown above apply only to device pin listings.

Examples $DEVICES$DEVNAME $PINS

The $PINS command is used to generate a list of pins associated with a device or signal. Here
are some notes on the usage of this command:

• $PINS will normally appear on either a $DEVICES or $SIGNALS line unless the script
has been run from a context that implies a current device or signal.

• The rules for sorting the pins before writing them out depend upon whether signal pins or
device pins are being listed. These rules are described in the following sections.

• For device pins, the format of each pin is determined by the $DEVPINFORMAT
command, for signal pins, by the $SIGPINFORMAT command.

• The overall format of the pin list is affected by the $ITEMSEPARATOR,
$MAXITEMSPERLINE, $LINEWIDTH, $CONTSTART, $CONTEND and other format
definition commands.

When used on a $DEVICES line, $PINS can take optional arguments that determine the number
and order of pins output. The numeric range format is intended to assist in generating netlist
formats that require a different position or format for the first pin (typically the output of a logic
element) than the remaining pins. This table summarizes the available formats:

$PINS All pins are listed.
$PINS(n) The single pin whose ordinal position in a complete $PINS

listing would be n is output. If there is no such pin, nothing is
output.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 121/155

$PINS(m..n) The pins whose ordinal positions in a complete $PINS listing
would be in the range m..n (inclusive) are output.

$PINS(m..) The pins whose ordinal positions in a complete $PINS listing
would be greater than or equal to m are output.

$PINS(..n) The pins whose ordinal positions in a complete $PINS listing
would be less than or equal to n are output.

$PINS(&attrField) The pins whose names are listed in the given device
attribute field are output in the order specified. The pins
must be listed in the attribute field by pin name, separated by
commas. If the attribute field is empty, no pins will be listed.
Any names that don’t match are ignored.

Sorting of Pin Entries in Device Pin Listings

Pin entries in a device pin listing are sorted according to the following rules, in decreasing order
of priority:

• If an attribute field has been specified in the form $PINS(&attrField), then exactly the pins
listed are output in the order given. Any items that don’t match are ignored. If the field is
empty, no pins are output.

• If a $DEVPINSEQUENCE command has been executed and the specified attribute field
is non-null, then exactly the pins listed are output in the order given. Any items that don’t
match are ignored. Unlike the $PINS(&attrField) format described above, if the attribute
field is empty, all pins are output.

• If neither of the above formats apply, then pins are sorted by pin number, whether or not
the pin number is displayed.

Sorting of Pin Entries in Signal Pin Listings

The report generator has no explicit method of specifying the sorting to be used for the pins listed
within a single signal using the $PINS statement. The pin list will be sorted by whichever type of
device name $DEVNAME, $DEVINSTNAME, $DEVHIERNAME) is used in the $SIGPINFORMAT
statement. If no name is used, they will be sorted by the Name of the associated device. For
pins on the same device, entries will be sorted by pin number.

Keyword 117 $PINSEQ
Status

Synopsis $PINSEQ[(origin)]

Returns Decimal integer

Type Data

Where Script - pin

Description Returns a sequence number starting at "n" for the first pin listed on this device or
signal. If not specified, zero is assumed for the origin.

Example $DEVPINFORMAT $PINSEQ(1)-$PINNAME

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 122/155

Keyword 118 $PINSIGSOURCE
Status

Synopsis $PINSIGSOURCE &fieldName

Returns N. A.

Type Definition

Where Top level

Description Specifies a pin attribute field from which will be extracted additional pin numbers
to be added to the same net as the current pin during $PINS listings.

Example $PINSIGSOURCE &ExtraPins

The $PINSIGSOURCE facility allows multiple pins in a netlist to be represented by a single pin on
the schematic. For example, some types of components have multiple package pins joined
internally to the same physical point on the device, in order to increase current handling capacity.
The $PINSIGSOURCE command specifies the name of a pin attribute field which will list
additional pins to attach to the one on which the attribute is found.

The $PINSIGSOURCE command line must appear before any $DEVICES, $SIGNALS, $FIND or
other commands that may operate on a device or signals list. The field specified must be defined
using the Define Attribute Fields command in the Schematic tool. The format of the pin list that is
inserted in this field is the same as for the $SIGSOURCE items, that is, a list of pin numbers
separated by commas. If a given pin has no value specified for this field, then its netlist entry will
be unaffected.

For example, the following command sequence will add extra pins to the netlist from the field
ExtraPins:

$PINSIGSOURCE &ExtraPins

$SIGNALS$SIGNAME $PINS

The following circuit fragment is shown with the values of ExtraPins shown on each pin. It is
important to note that this is an attribute of each individual pin, not of the associated device or
signal.

2 1

ExtraPins= 4,6 ExtraPins= 3,5

C1

Pins 1 and 2 are specified using the normal pin numbering scheme. The items in ExtraPins will
be added to the same net as the associated pin. In a typical Netlist format, this will generate the
following results:

SIG1 C1-2 C1-4 C1-6

SIG2 C1-1 C1-3 C1-5

The $PINSIGSOURCE command will significantly slow down report generation because every
pin listed in the Netlist must be searched for the specified attribute field. For this reason, we do
no recommend inserting it as a general-purpose addition to your Netlist forms if you are not using
it.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 123/155

➢ See also: $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE $SIGSOURCE

Keyword 119 $PINTYPE
Status

Synopsis $PINTYPE

Returns String

Type Data

Where Script - pin

Description Returns a string representing the type of the current pin. The string used for
each pin type can be set using the $PINTYPEFORMAT command.

Example $DEVPINFORMAT $PINNAME\($PINTYPE\)

Keyword 120 $PINTYPEFORMAT
Status

Synopsis $PINTYPEFORMAT literalString1 literalString2 ...

Returns N.A.

Type Definition

Where Top level

Description Specifies the string used to describe each pin type, i.e. the string that will be
returned by $PINTYPE.

Example $PINTYPEFORMAT I O O O O O O O O O O O O O O O O O P

This indicates that the single letter I will be returned by $PINTYPE for input pins,
O for output and P for power pins.

This format command specifies the way the type (i.e. input, output, etc.) of a device pin is
presented in reports. Whenever the $PINTYPE keyword is encountered, the program uses the
pin type of the current pin to look up a string in this list and that is substituted into the output.

The $PINTYPEFORMAT command must be followed on the line by a sequence of literal strings
separated by blanks which described the appearance of each item. The strings are given in the
following order, separated by blanks:

$PINTYPEFORMAT Item Order

Item order Function Default string

1 Input INPUT

2 Output OUTPUT

3 3-state 3STATE

4 Bidirectional BIDIR

5 Not used ?????

6 Open Collector OC

7 Undefined ?????

8 Bus BUS

9 Perm. low LOW

10 Perm. high HIGH

11 Latched input LTCHIN

12 Latched output LTCHOUT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 124/155

13 Clocked input CLKIN

14 Clocked output CLKOUT

15 Clock input CLOCK

16 Open Emitter OE

17 No connection NC

18 Power POWER

“Undefined” can only occur if a device was being created in the DevEditor and was closed before
all its pins had been specified.

If less than 18 strings are specified, the trailing items retain their default value.

Note however that there are presently only three types of pins available with EMTPWorks circuits:
INPUT (1), OUTPUT(2) and POWER(18).

Generating a Warning for Invalid Pin Types

The $PINTYPEFORMAT command also provides the ability to generate a warning to the user if a
pin type is used that is invalid for the type of output being generated. If the keyword $WARN is
inserted in the list of type strings, if any of the following items are used, a warning will be
generated. $NOWARN turns this back off again. For example:

$PINTYPEFORMAT I O O B $WARN ? ? ? ? ? ? ? ? ? ? ? ? ?

This specifies that if any pin type other than the ones specifically allowed are found in the design,
the user will be warned and a "?" will be placed in the output.

➢ See also: $PINTYPE

Keyword 121 $PLUS
Status

Synopsis $PLUS(string1,string2)

Returns Decimal integer

Type Data

Where Script

Description Performs an integer addition and returns a decimal string of the result. All
arithmetic is done with 32-bit signed values.

Example $SETVAR(ErrCount, $PLUS(&ErrCount, &NewErrs))

➢ See also: $DIV $MINUS $MULT $PLUS

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 125/155

Keyword 122 $PORTNAME
Status

Synopsis $PORTNAME

Returns Text

Type Data

Where Script - Pin

Description If the current pin is a port, this returns its port name, if not, null. This is used to
get the name of a port connector from within a subcircuit. This is only valid for
port pins, i.e. when $ISPORT is TRUE.

Example $INCLUDEPORTSON
$FIND $DEVICES $ISPORT
$DEVPINFORMAT $PORTNAME
$DEVICES$PINS

This will produce a list of all the ports in a circuit.

This keyword is used to create a port list when working from a subcircuit upwards. It returns the
"port name" associated with a pin on a port connector, i.e. the name that will be used to associate
the port with a parent symbol. For any non-bus port connector, there is only one pin and this will
return the name applied by the user to the port connector symbol itself. For bus port connectors,
for pin 1 (i.e. the bus pin) it will return the port connector name. For pins 2 and up (i.e. the
internal signal pins), it will return the pin name.

The keyword is not valid for non-port connector pins.

➢ See also: $ISPORT $INCLUDEPORTSON/$INCLUDEPORTSOFF

Keyword 123 $PRIMNAME
Status

Synopsis $PRIMNAME

Returns String

Type Data

Where Script - device

Description Returns the primitive type name of the current device, that is, the name of the
EMTPWorks primitive type that was used in creating the symbol.

Example $DEVICES$DEVNAME $TYPENAME\($PRIMNAME\)

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 126/155

Keyword 124 $PROGPATH
Status

Synopsis $PROGPATH

Returns Text

Type Data

Where Script – design

Description Returns the path set by $FOLDER or $DIRECTORY commands.

Examples My default folder is: $PROGPATH

➢ See also: $FOLDER

Keyword 125 $PROGRESS
Status

Synopsis $PROGRESS(string)[$ON|$OFF][$PERCENTON|$PERCENTOFF]
$PROGRESS(string)

Returns N.A.

Type Definition

Where First form - Top level.
Second form – Script

Description Controls the display of the progress window.

Example $DEVICES$PROGRESS(Now generating $TYPENAME)$INTERNAL

This will display the current type name in the progress window.

This command allows you to override the default behaviour of the progress window that is
displayed during script execution. Especially in complex scripts, the display of percentages may
be meaningless and it may be better to display a single message indicating the current function.
In other case, you may want the script to execute invisibly by disabling the progress window
completely.

When it appears at the top level of a script (i.e. on a line by itself) $PROGRESS can take a
number of options:

• $PERCENTOFF - This disables the display of the percentage complete.

• $PERCENTON - This enables the display of the percentage complete for subsequent
iterating commands, e.g. $DEVICES.

• $OFF - This completely disables the progress window, removing it from the screen.

• $ON - This re-enables the progress window or has no effect if it is already displayed.

When it appears in a script line such as $DEVICES, $PROGRESS can only be used to specify
the string that will appear in the window.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 127/155

Keyword $PROMPT1/$PROMPT2

Status

Synopsis $PROMPT1(message)

Returns String

Type Data

Where Script

Description Displays a prompt box to the user with the given message text. $PROMPT1 dis-
plays only one button, OK. $PROMPT2 displays two buttons, OK and Cancel.
Returns the entered string if OK, NULL if Cancel.

Example $PROMPT1(Enter your name please)

➢ See also: $ALERT1/$ALERT2

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 128/155

Keyword 126 $REGEXP
Status

Synopsis $REGEXP(regularExpression,string)

Returns Boolean

Type Data

Where Script

Description Matches the regular expression supplied against the given string. May also set
the values of match variables &1 through &9. Returns TRUE if the match is
successful, FALSE otherwise.

Example $IF($REGEXP(.*(\d+).*, &Value))The numeric part is &1$END

The given regular expression means "match any sequence of characters fol-
lowed by one or more digits followed by any sequence of characters". Because
the "digits" part of the expression is in parentheses, it will be assigned to match
variable &1 if it is successful. If $REGEXP is successful, it returns TRUE ("1")
and the numeric value will be output.

This command applies a Unix-style regular expression against a given string. This can be used
to check the format of any text values in a design or to extract sub-fields out of any data string, as
shown in the above example. This can be used in conjunction with the $INCLUDE $EXECUTE
command to read arbitrary text data from a file for back annotation or other purposes.

Because regular expressions are a major topic, they are covered in more detail in “Regular
Expressions” on page 39.

Keyword 127 $REPLICATE
Status

Synopsis $REPLICATE(string,char1, ,char2)

Returns Text

Type Definition

Where Top level

Description Replaces char1 by char2 in string and returns the result.

Example $SETVAR(_Test,It is a test)
$REPLICATE(&_Test,a, ,b)

The output will be:
It is b test

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 129/155

Keyword 128 $REPORTON/$REPORTOFF
Status

Synopsis $REPORTON
$REPORTOFF

Returns N.A.

Type Definition

Where Top level

Description Enables and disables report output.

Example $REPORTOFF

These commands are used to enable or disable the generation of an output file during script
execution. By default, any literal data in a script or any data generated by commands is output to
a text file. If no output file exists at the time this data is encountered, the user is prompted to
create a file. This behaviour may not be desired in cases where a script is being used for non-
reporting purposes such as updating values in a design. In this case, the $REPORTOFF
command disables the default file output. Note that transcript output is not affected.

➢ See also: $CREATEREPORT

Keyword 129 $REPORTPAGE
Status

Synopsis $REPORTPAGE

Returns Decimal integer

Type Data

Where Script

Description This command returns the page number of the report output.

Example $HEADER
Page Number: $REPORTPAGE Date: $DATE
$ENDHEADER

➢ See also: $PAGE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 130/155

Keyword 130 $SAMEPINCOUNT
Status

Synopsis $SAMEPINCOUNT

Returns Decimal integer

Type Data

Where Script - Pin

Description Returns a decimal integer indicating how many pins on the same device as the
current pin have the same pin number. Used to detect duplicate pin numbers on
devices.

Examples $SORT $DEVICES $DEVNAME
$COMBDEVSON
$DEVPINFORMAT $IF($GT($SAMEPINCOUNT, 1))Duplicate pin!$END

$DEVICES$IF($NONBLANK($PINS))$SELECT$END

This script will select any device in the circuit with duplicate pin numbers. The
sort is necessary to merge symbols with the same package name.

This keyword is valid in a device pin format and is used to detect cases of duplicate pin numbers
on a device. Note that if two pins have the same pin number and are attached to the same
signal, they are not counted as duplicates. This is done because power and ground pins in
attributes and other common pins are frequently repeated on multiple symbols assigned to the
same package. As long is there is no conflict, this is not considered to be an error.

Keyword 131 $SCRIPTPATH
Status

Synopsis $SCRIPTPATH

Returns Text

Type Data

Where Script – design

Description Returns the script file path

Examples My script directory is: $SCRIPTPATH

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 131/155

Keyword 132 $SELECT
Status

Synopsis $SELECT

Returns N.A.

Type Definition

Where Script - any object

Description Selects the current object on the schematic, i.e. highlights it for user operations.

Examples $SORT $DEVICES $DEVNAME
$COMBDEVSON
$DEVPINFORMAT $IF($GT($SAMEPINCOUNT, 1))Duplicate pin!$END
$DEVICES$IF($NONBLANK($PINS))$SELECT$END

This script will select any device in the circuit with duplicate pin numbers.

This keyword is used to create interaction between the execution of the script and the user. It
allows the script to select objects in the schematic so that they can be located by the user with
the “Go To Selection” command or operated on with the Browser tool, etc.

Keyword 133 $SELECTED
Status

Synopsis $SELECTED

Returns Boolean

Type Data

Where Script - any object

Description Returns TRUE (1) if the current object is in a selected state on the schematic.
Allows the script to locate objects selected by the user on the schematic for
subsequent operations.

Examples $FIND $DEVICES $SELECTED
$DEVICES$DEVNAME

Makes a list of the selected devices.

Keyword 134 $SETATTR
Status

Synopsis $SETATTR(fieldName, string)

Returns N.A.

Type Definition

Where Script - any object

Description Sets the given attribute field to the given string value in the current object. If the
field does not exist, it is created.

Examples $SETATTR(ReportDate, $DATE($R))

The $SETATTR command allows you to define and set attribute fields to a specified string value.
This command can be used anywhere, e.g. on a top-level line of the script, on a $DEVICES or
$SIGNALS line or within a $SIGPINFORMAT or $DEVPINFORMAT. This command always
operates on the "current object" which may depend on context. In particular, if used in a
$SIGPINFORMAT or $DEVPINFORMAT, it always operates on the current pin. If you want to

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 132/155

extract information from a pin and apply it to the parent device or signal, you have to assign it to a
variable and apply it to the device or signal on the $DEVICES or $SIGNALS line.

See more information about the current object in “Current Design or Current Object” on page 14.

If the given attribute field is not defined in the design’s attribute table, it will be added
automatically with default settings. It generally preferable to define a field explicitly using
$DEFINEATTR before setting it to ensure that you get the definition settings you want, e.g.
Primary vs. Secondary.

Keyword 135 $SETERRORBIT
Status

Synopsis $SETERRORBIT(bitNum)

Returns N. A.

Type Definition

Where Script - Any object

Description Sets the given bit number in the binary error set represented in the object’s
"OKErrors" attribute field.

Examples $FIND $DEVICES $SELECTED
$DEVICES$SETERRORBIT(7)
Sets the "Mark as OK" setting on the given bit on each device that is selected in
the circuit.

This call is one of a set of commands designed to implement a "Mark as OK" feature in error
checking scripts.

➢ See also: $CLEARERRORBIT $CLEARERRORS $ERRORBITON $ERRORBITOFF and

“Implementing Mark as OK in Error Checking Scripts” on page 28.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 133/155

Keyword 136 $SETSIGWIDTH
Status

Synopsis $SETSIGWIDTH(numString)

Returns N.A.

Type Definition

Where Script - Signal

Description Sets the given "line width" setting for the given signal to the integer value
expressed in decimal in numString.

Examples $FIND $SIGNALS $SELECTED
$SIGNALS$SETSIGWIDTH(3)

This script will set the width on selected signals in the current circuit to 3.

This command intended to assist in applications where signal lines are used to represent vectors
or busses and it is desired to show this graphically using different line widths on the schematic.
The normal width for a signal line is 1.

Keyword 137 $SETVAR
Status

Synopsis $SETVAR(varName, string)

Returns N.A.

Type Definition

Where Script

Description Sets the given variable to the given string value. If the variable does not exist, it
is created.

Examples $SETVAR(ErrMsg, The number of errors was &NumErrs)

The $SETVAR command allows you to define and set variables to a specified string value. This
command can be used anywhere, e.g. on a top-level line of the script, on a $DEVICES or
$SIGNALS line or within a $SIGPINFORMAT or $DEVPINFORMAT. Variables are "global" and
"static" in the sense that a variable set anywhere will hold its value and be known anywhere else
in the script until it is explicitly changed. For example, you can set use $SETVAR to set a
variable to some value in a $SIGPINFORMAT used by a $SIGNALS $PINS listing. The last value
set will still be known after the $SIGNALS listing is complete.

Note that an empty string is a valid string value, so $SETVAR(BadPins,) is a valid usage of this
command.

IMPORTANT NOTE REGARDING VARIABLE REFERENCES

 If a variable is not known at the time a reference to it is encountered by the script parser, a null
value is assumed. This is done for two reasons:
The parser cannot distinguish between attribute references and variable references because they
both use the same syntax. It therefore doesn’t want to create a variable in response to this
reference if it was intended as an attribute reference.

For efficiency, references to variables and attribute fields that don’t exist are compiled out so that
repeatd executions will not waste time looking the values up.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 134/155

Because script lines are compiled a line at a time, unexpected results may occur if you refer to a
variable value before the $SETVAR that sets it on the same line. For example:

$DEVICES$IF($NOT(&BeenHere))First Time!ENDSETVAR(BeenHere, X)

When the reference to BeenHere is encountered while compiling this line, the variable does not
exist and so it is ignored, i.e. assumed to be null. Even though the value is set later on the line,
the text "First Time" will be output for every device in this listing.

The solution to this problem is to always do a $SETVAR on a line by itself to define the variable if
there is any chance that it may be referred to before the first real value set. In this case:

$SETVAR(Beenhere,)

$DEVICES$IF($NOT(&BeenHere))First Time!ENDSETVAR(BeenHere, X)

will produce the desired results.

Keyword 138 $SIGCOUNT
Status

Synopsis $SIGCOUNT

Returns Decimal integer.

Type Data

Where Script

Description The number of items on current signal list. If COMBSIGSON has been set, this
will mean in effect the number of different sort values in the list.

Examples $SIGNALS
$ALERT1(the number of items on current signal list is: $SIGCOUNT)

$SIGCOUNT is valid only after a $SORT $SIGNALS, a $FIND $SIGNALS, or a $SIGNALS line
has been executed.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 135/155

Keyword 139 $SIGHIERNAME
Status

Synopsis $SIGHIERNAME

Returns Text

Type Data

Where Script - signal

Description Returns the hierarchical name of the current signal, i.e. the signal name prefixed
with the names of any parent devices in the hierarchy. In Flat designs, this is
equivalent to $SIGNAME. This is not valid in Pure designs since there is no
unequivocal path from a given signal to the top-level circuit.

Examples $SIGNALS$SIGHIERNAME $PINS

This will generate a list of signals showing the hierarchical name of each followed
by a list of the attached pins.

$SIGHIERNAME is intended to provide a unique signal identifier when generating flattened
netlists from hierarchical designs. Here are some important points to remember when using this
keyword.

The hierarchical name consists of the Name value for the current signal with the "path" formed by
its parent devices prefixed to it, such as:
MEMBLK1/CONTROL/CTR2

The separator character that is used in generating these names can be set using the
$HIERNAMESEPARATOR command.

Hierarchical names can be arbitrarily long, depending on the nesting level. For this reason, they
may not be suitable as an identifier in many Netlist formats.

➢ See also $HIERNAMESEPARATOR and “Script Hierarchy Issues” on page 32.

Keyword 140 $SIGINSTNAME
Status

Synopsis $SIGINSTNAME

Returns Text

Type Data

Where Script - signal

Description Returns the instance name of the current signal, i.e. the contents of its InstName
attribute field.

Examples $SIGNALS$SIGINSTNAME $PINS

This will generate a list of signals showing the instance name of each followed by
a list of the attached pins.

The signal instance name is not automatically assigned by the program. $SIGINSTNAME is not
normally used to identify signals in Netlists for this reason. It is more common to use
$SIGHIERNAME unless the target system has a strict name length or character set limit that
makes this impossible. If $SIGINSTNAME is used it is the user’s responsibility to ensure that
every signal in the design has been assigned a unique value.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 136/155

Keyword 141 $SIGLOC
Status

Synopsis $SIGLOC

Returns Text

Type Data

Where Script - Signal

Description Will be replaced the "locator" or hierarchical token number of the current signal
object.

Examples $SIGNALS$SIGHIERNAME $SIGLOC

The $SIGLOC command will be replaced by a unique identifier string referred to as a "locator".
This can be used to uniquely identify any signal within a hierarchical design. The locator is used
by other EMTPWorks modules like ErrorFind to locate objects unambiguously without relying on
internal memory addresses.

The format of the locator string is described elsewhere in this manual.

Keyword 142 $SIGNALS
Status

Synopsis $SIGNALS formatItems

Returns Text

Type Data

Where Top level

Description Creates a listing of signals using the format items following on the line.

Examples $SIGNALS$DEVNAME $PINS

This will generate a list of signals showing the name of each followed by a list of
the attached pins.

The $SIGNALS keyword also appears as a modifier of the $FIND, $SORT, $ASSIGNNAMES,
$ASSIGNINSTNAMES and $BREAK commands. See the entries for those commands for more
information.

The $SIGNALS command is the primary command for generating any listing by signal. The
format of the listing is determined by the format items that follow the command on the line and by
the various definition options, as outlined below.

The scope of the listing in hierarchical designs is affected by the $HIERARCHY command.

A subset of the signals in the design can be extracted using any desired criteria using the $FIND
command.

The ordering of signals in the listing is affected by the $SORT command.

If the $COMBSIGSON has been selected, multiple items with the same sort value will appear on
one line.

The $NEWLINE format command can force multiple lines to be generated for each item.

Limits on line length imposed by the $LINEWIDTH and $MAXITEMSPERLINE commands may
cause multiple lines to be generated.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 137/155

he format of the listing for each signal is completely determined by the text and commands which
follow the $SIGNALS keyword. There is no default format, so if no line format is specified, a
sequence of empty lines will be written to the file.

Any characters appearing after $SIGNALS that is not part of a format sub-command will be
placed verbatim in each line of the listing. For example, blanks, tabs or commas can be used to
format each line.

Numerous data-generating commands can be used in defining the output generated on each line.
Any command listed with a "Where" value of "Script - Signal", "Script - Circuit", "Script - Any
object" or "Script" can be used on a $SIGNALS line. Some of the more common format items are
summarized in this table. See the corresponding keyword section for each item for more
information.

$SIGNAME The name of the signal, that is, the contents of its Name attribute
field.

$SIGSEQ(n) The sequence number of the current signal, i.e. an integer
assigned to the signal, starting at "n" for the first device in the
sorted sequence and incremented for each subsequent one.

$COUNT The number of signals being merged to form this line, i.e. the
number having the same sort value.

$SINGLE Tells the report generator to write only a single value for all items
following on the line, regardless of how many items were combined
with the same sort value.

$NUMPINS The number of pins attached to the signal.

$PAGE The circuit page that this signal appears on. Since signals can
connect across pages, this can generate multiple values.

$PINS A list of the signal's pins. The format of each item is determined
by the $SIGPINFORMAT command.

$COL(N) If the current position in a line is less than N spaces form the left
hand end then blanks are inserted until the Nth column is reached.

$NEWLINE Writes a new line character into the file. This allows a device entry
to occupy several lines in the output report.

&attr Inserts the value of the attribute field specified.

A variety of applications for the $SIGNALS command are described in “Script Examples” on page
44.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 138/155

Keyword 143 $SIGNAME
Status

Synopsis $SIGNAME

Returns Text

Type Data

Where Script – signal

Description Returns the name of the current signal, i.e. the contents of its Name attribute
field. The name can be optionally prefixed with the name of any enclosing bus
by using the $BUSNAMEON command.

Examples $SIGNALS$SIGNAME $PINS

This will generate a list of signals showing the name of each followed by a list of
the attached pins.

➢ See also: $BUSNAME $BUSNAMEON/$BUSNAMEOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 139/155

Keyword 144 $SIGPINFORMAT
Status

Synopsis $SIGPINFORMAT formatItems
$SIGPINFORMAT(formatItems)

Returns Text

Type Data

Where First form - Top level
Second form - Script – signal

Description Sets the format that will be used for each pin output by the next $PINS command
in a $SIGNALS line. The first form (without parentheses) can only be used on a
top-level line. The second form (with parentheses) can be used either on a top-
level line or in a $SIGNALS line. This allows the format to be modified on the fly
while generating output for a single signal.

Examples $SIGPINFORMAT [$PINNAME,$PINNUM]
$ITEMSEPARATOR(,)
$SIGNALS$SIGNAME $PINS

This will generate a list of signals showing the name of each followed by a list of
the attached pins using the format specified:
U1 [A,1],[B,2],[Q,3]

See the notes on the usage of pin formats under “$DEVPINFORMAT$DEVPINFORMAT”
command.87

Keyword 145 $SIGSEQ
Status

Synopsis $SIGSEQ[(origin)]

Returns Decimal integer

Type Data

Where Script – signal

Description Returns an integer indicating the position in the sort sequence of this signal. If
the original is not specified, numbering starts at zero.

Examples $SORT $SIGNALS $SIGNAME
$SIGNALS$SIGSEQ(1). $SIGNAME

This will generate a listing of devices that looks something the following:
1. C1
2. C2
3. U1
4. U2

$SIGSEQ returns the sequence number of the current device, that is, an integer assigned to the
device, starting at "origin" for the first device in the sorted sequence and incremented for each
subsequent one. This number is not permanently associated with the device but it strictly its
sequence number in the current sort. The "(origin)" part is optional. If it is omitted the sequence
starts at zero. If no sort has been done, all devices will have the origin sequence number.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 140/155

Keyword 146 $SIGSOURCE
Status

Synopsis $SIGSOURCE(sigName) [&fieldName]

Returns N. A.

Type Definition

Where Top level

Description Defines a "signal source" attribute field. If fieldName is not specified, it is
assumed to be the same as the signal name.

Examples $SIGSOURCE(Plus5V) &Power

This will cause the attribute field "Power" to be searched in each device for pin
numbers to add to the net "Plus5V".

The "signal source" facility allows you to name certain signals to be treated as power and ground
nets. This has the following two effects:

• It allows you to create common connections in a circuit using attribute entries in devices.
This can be used to create power and ground entries in the netlist without having to show
all these connections explicitly on the diagram.

• It informs the Netlist generator that the given signals should be merged across hierarchy
levels.

See more information on power and ground nets in hierarchy in “Script Hierarchy Issues” on page
32.

Any device attribute field may be specified as a signal source by the command:

$SIGSOURCE(signalName) &fieldName

signalName is the name of the signal to attach pins to in the netlist. fieldName is the name of the
attribute field to search for in each device to look for pin numbers to attach to the named signal. If
&fieldName is omitted, the signal name is taken to be the name of the attribute field to search.

The named device attribute field is assumed to contain a list of pin numbers to attach to the
signal. This can consist of a single pin entry, such as "7", or a list, such as "5,6,9,14".

For example, Ground connections can be created as follows:

• Using the Attributes command on a selected device, create an entry such as "7" in the
Ground attribute for a device, in this case connecting pin 7 to the Ground net.

• Place the command $SIGSOURCE(Ground) in the script. This causes Report to search
all device attributes for fields named Ground and use the field value as a pin number.

There is no fixed limit to the number of SIGSOURCE entries that can be created.

The predefined fields Ground and Power are normally used for standard power and ground
connections. These pin connections are prespecified for all digital components in the standard
EMTPWorks libraries. Corresponding $SIGSOURCE statements are included, where
appropriate, in all standard netlist script files. You can create your own special-purpose power
nets by using the Define Attribute Fields command to define a new field, then adding the

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 141/155

appropriate SIGSOURCE statement to the netlist script. Alternatively, the
$DESIGNSIGSOURCE command can be used to allow special-purpose signal sources to be
specified per design.

➢ See also: $DESIGNPINSIGSOURCE/$DESIGNSIGSOURCE and “Reporting Power and

Ground Nets” on page 30.

Keyword 147 $SIGTOKEN
Status

Synopsis $SIGTOKEN

Returns Decimal integer

Type Data

Where Script - signal

Description Returns an integer representing the signal’s token number.

Examples $SIGNALS$SIGNAME $SIGTOKEN

This will generate a listing of signals with the name and token number of each.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 142/155

Keyword 148 $SINGLE
Status

Synopsis $SINGLE

Returns N.A.

Type Definition

Where Script - In $DEVICES or $SIGNALS line.

Description Indicates that only a single object value should be output for the next printing
item on the line.

Example $SORT $DEVICES $TYPENAME
$COMBDEVSON
$DEVICES\An example of a $TYPENAME is $SINGLE$DEVNAME

In this case, if $SINGLE was not specified, $DEVNAME would cause the names
of all devices having the same type name to be output on that line. $SINGLE
indicates that we only want one.

The $SINGLE command is used to override the default "merging" behaviour when outputting a
sorted listing. In an example of the type shown above, the device list has been sorted by one
field, in this case the type name. Since "$COMBDEVSON" has been specified, all devices with
the same sort value (type name in this case) will be merged onto one line. If any keyword
appears on that line that generates data derived from a device, all the values associated with
objects included in that line will be shown. In this case, the $DEVNAME keyword would cause a
list of the names of all devices of each type to appear together on the line.

In some cases, it is desired to put out only a single value on a line, regardless of how many
objects are represented. The $SINGLE keyword indicates that the next data keyword should be
used only once. Note that only the first item found on the list is output and there is no guarantee
of which object this will be or that the same order will be preserved after the design has been
edited.

➢ See also: $MERGE $COMBDEVSON/$COMBDEVSOFF $SORT

Keyword 149 $SORT
Status

Synopsis $SORT $DEVICES|$SIGNALS [$ASCENDING|$DESCENDING]
[$LEXICAL|$NUMERIC] [$NULLLOW|$NULLHIGH] sortItems

Returns N. A.

Type Action

Where Top level

Description Sorts the device or signal list according to the sort items specified.

Examples $SORT $DEVICES $TYPENAME

This will generate a listing of devices sorted by their type name.

The $SORT command provides the ability to sort device and signal listings on any data field.
Items with the same value in any field can be optionally merged into a single line. This allows
listings to be organized to suit various applications, for example:

• Device or signal lists can be sorted by name to enhance readability.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 143/155

• Device lists can be sorted by type so that each line lists one device type with all
information common to that type and a list of instances of the type.

• A device list can be sorted by page number to show the devices used on each page.

• Signals can be sorted by an attribute field, for example to give priority to certain nets so
they are listed first for autorouting purposes.

• Devices can be sorted by any attribute field, for example by component value, stock
number, cost, etc.

The $SORT command has the following basic form:

$SORT objectType field1 field2 ...

objectType must be either "$DEVICES" or "$SIGNALS".

field1, field2, etc. are identifiers indicating which fields to sort on. The list is sorted first on the first
field. If any items in the list have identical values in that field, then the groups of like-valued items
are sorted on the next specified field, etc.

Sort fields are limited to the specific keywords shown in the table below. In this version, it is not
possible to use arbitrary Scripter functions and expressions as sort values.

Once a sort has been done, it remains in effect for all subsequent listings on that object type until
the next $SORT or $FIND command. Each $SORT clears the previous $SORT.

Sort Options

A number of options can be specified that will affect the sorted order:

$ASCENDING/
$DESCENDING

Specifying one of these two keywords indicates the desired sort order. If
$ASCENDING is given, the list will be sorted by increasing values of the sort
key, $DESCENDING will produce the opposite order. $ASCENDING is the
default.

$LEXICAL/
$NUMERIC

These options determine how numeric values are treated as part of a sort
value. If $LEXICAL is specified, sorting is done strictly on ASCII character
values. If $NUMERIC is specified, any sequence of numeric characters
found in a sort item is taken as an integer value. For example, if you were
sorting three devices named U2, U9 and U11, a lexical sort will produce U11,
U2, U9, whereas a numeric sort will produce U2, U9, U11. The numeric sort
is generally preferable for items numbered with integers, whereas the lexical
sort is better for comonent values, part numbers or other cases where a
value should just be treated as a sequence of characters even if it contains
digits. $NUMERIC is the default.

$NULLLOW/
$NULLHIGH

These options determine the handling of null valued items, i.e. empty strings.
If $NULLLOW is set, null items will be considered to have a low value. In
other words, if an $ASCENDING sort is done, they will appear first.
$NULLHIGH is the default.

Sort Field Keywords

The following table describes the sort fields available.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 144/155

$SORT Item Keywords

Sort Item Keyword Object Type Meaning

$DEVNAME $DEVICES The device name.

$DEVHIERNAME $DEVICES The device hierarchical name.

$DEVINSTNAME $DEVICES The device instance name.

$SIGNAME $SIGNAlS The signal name.

$SIGHIERNAME $SIGNALS The signal hierarchical name.

$SIGINSTNAME $SIGNALS The signal instance name.

$SIGSOURCE $SIGNALS An integer value that is 1 for the first SIGSOURCE
name declared in the script, 2 for the next one,
etc. Nets that are not declared as SIGSOURCES
get a high value. This is used to give a higher
priority to power and ground nets in netlists.

$POSX $DEVICES The X position on the schematic.

$POSY $DEVICES The Y position on the schematic.

$TYPENAME $DEVICES The type name.

$PAGE $DEVICES
$SIGNALS

The schematic page number the object appears
on. For signals that connect across pages, this
may be any one of the pages, randomly chosen.

$DEPTH $DEVICES An integer indicating how many layers of hierarchy
exist below this symbol. Sorting by this value will
produce a "define before use" hierarchical netlist.

$NUMPINS $SIGNALS The number of pins attached to this net.

$RAW $DEVICES
$SIGNALS

This causes the list to be marked as sorted
without sorting it. This is used to merge all items
in the list onto one line without performing any
sort.

&field $DEVICES
$SIGNAlS

An attribute field value.

➢ See also: $COMBDEVSON/$COMBDEVSOFF $COMBPINSON/$COMBPINSOFF, and

“Sorting and Merging” on page 23.

Keyword 150 $SPACE
Status

Synopsis $SPACE(numCols)

Returns N.A.

Type Definition

Where Top level

Description Specifies a column spacing for repeated items used when $ALIGNCOLSON has
been enabled. Default is 16. This command will work well if repeating are on a
separated line.

Examples $ALIGNCOLSON
$SPACE(32)

➢ See also: $ALIGNCOLSON/$ALIGNCOLSOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 145/155

Keyword 151 $SYSPIN
Status

Synopsis $SYSPIN

Returns Decimal integer

Type Data

Where Script – pin

Description Returns the systems internal pin sequence number for the current pin. This is
valid only for pins actually defined on the device symbol on the schematic and is
number from 1 to N. For pins added by a $SIGSOURCE, this number will be
zero.

Examples $DEVPINFORMAT $PINNAME-$SYSPIN
$SORT $DEVICES $TYPENAME
$COMBDEVSON
$DEVICES$TYPENAME $PINS

This script will produce a listing of the pins defined on each device type in the
design.

➢ See also: $PINNUM $PINSEQ

Keyword 152 $SYSTEMOPEN
Status

Synopsis $SYSTEMOPEN(filePathandName,["argument1;argument2;… "])

Returns N.A.

Type Definition

Where Top level

Description Asks the Finder to open the specified file.

Examples $SYSTEMOPEN(emtp/emtpopt.exe)

The $SYSTEMOPEN command provides a mechanism of starting up other applications from
within a script and requesting that document files, such as report output, be opened. The
specified file can be either an application or a document. In either case, the action is as if the
user double-clicked on the file in the Windows Explorer. If it is an application, it will be launched,
or, if it is already running, brought to the front. If it is a document, the application specified as its
"creator" will be asked to open it.

➢ See also: $CREATEREPORT

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 146/155

Keyword 153 $TAB
Status

Synopsis $TAB

Returns A tab character.

Type Data

Where Script

Description This keyword is intended to make the intent of a script more clear by using an
explicit keyword to insert a tab instead of a literal tab character, which may be
misinterpreted by a human reader of a script as one or more blanks.

Examples Device Name$TAB\Value
$DEVICES$DEVNAME$TAB&Value

This creates a simple device listing with 2 columns separated by a tab character.

Keyword 154 $TABFIELDSON/$TABFIELDSOFF
Status

Synopsis $TABFIELDSON
$TABFIELDSOFF

Returns N. A.

Type Definition

Where Top level

Description This command specifies that repeating data items should be separated by a tab
character. The default is OFF.

Examples $TABFIELDSON

➢ See also: $TAB $ITEMSEPARATOR $ALIGNCOLSON/$ALIGNCOLSOFF

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 147/155

Keyword 155 $TABLE
Status

Synopsis $TABLE(blockName[, prefixString[, suffixString]])

Returns Text

Type Data

Where Script

Description Evaluates a list of IF THEN ELSE conditions specified in the block. If prefixString
is specified, it is inserted at the front of the generated string only if the table
generates some non-null text. Similarly, if suffixString is specified it will be
appended to the generated string if any non-null value is produced.

Examples $DEFINEBLOCK(SYMParams)
&X_BLKNM ,BLKNM=&X_BLKNM
&X_HBLKNM ,HBLKNM=&X_HBLKNM
&X_LOC ,LOC=&X_LOC
&X_LOC_NOT ,LOC<>&X_LOC_NOT
$END
$DEVICES$TABLE(SYMParams)

Every time the $TABLE command is encountered (i.e. for each device in this
case), all the lines in the block are evaluated as follows: The item in the first
column (i.e. up to the tab character) is evaluated. If it produces any non-null
string, the item in the second column is evaluated and output. If the first column
produces a null string, the third column (if any) is evaluated and output. Note
that the columns are separated by a single tab character.

The $TABLE command is intended as a shortcut format for specifying a long sequence of
IF/THEN/ELSE conditions. It was created for use in netlist formats that may have a large number
of optional fields that depend on attribute values specified in the design. Instead of a very long
line of $IF/$ELSE/$END sequences, the $TABLE allows optional fields to laid out in a more
readable vertical format.

The format of a table is as follows:

$DEFINEBLOCK(blockName)

 testExpression1tabtrueExpression1tabfalseExpression1

 testExpression2tabtrueExpression2tabfalseExpression2

 testExpression3tabtrueExpression3tabfalseExpression3

 .

 .

 .

 $END

The tab notation indicates a tab character. Each testExpression can be any combination of
commands that produces a string. As shown in the above example, this will typically be
"&attrField" to test for the existence of an attribute field, but any other expression can be used.
Although it is legal, it normally won’t make sense for testExpression to contain any literal
characters, since this would result in the expression always being non-null, or "true".

trueExpression similarly can be any combination of commands and literal characters. If
testExpression is non-null this expression is evaluated and the resulting string is concatenated to
the output. The second tab character and falseExpression are optional. If present,
falseExpression is evaluated and the result concatenated if testExpression is null (false).

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 148/155

Note that all lines in the table are evaluated and the results concatenated in the order they are
found. The $TABLE (at least, if used without the optional prefix and suffix arguments) is exactly
equivalent to:

$IF(testExpression1)trueExpression1$ELSEfalseExpres-

sionENDIF(textExpression2) ...

The tabs between the columns of the table and the newline characters at the ends of the lines are
never included in the output. A tab can be included in any of the expressions by escaping it with
a backslash, and a newline can be included by using the $NEWLINE command.

The $TABLE command allows for the optional inclusion of a prefix and suffix string. This can
allow for a separator character, such as a comma or tab, to be inserted before or after any text
generated by the $TABLE. Note that a comma must be escaped with a backslash in this usage
so that it is not confused with an argument terminator. For example:

$TABLE(ArgList, \,)

If the backslash was not used, the comma would be taken as an argument separator and this
would be interpreted as specifying null strings for the prefix and suffix.

Keyword 156 $TEMPPATH
Status

Synopsis $TEMPPATH

Returns Text

Type Data

Where Script – design

Description Returns the default Windows temporary path.

Examples My temporary directory is: $TEMPPATH

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 149/155

Keyword 157 $TEXTLINE
Status

Synopsis $TEXTLINE

Returns Text

Type Data

Where Script

Description Returns the current line read from a text file using the $INCLUDE $EXECUTE
option. Used in conjunction with the $EXECUTE option of the $INCLUDE
command, this keyword represents the value of the latest line of text read from
the file, not including the line terminator.

Example $DEFINEBLOCK(LineBlock)
$NULL($REXEXP((\w)\s+(\S+), $TEXTLINE))
$FIND $DEVICES $EQ($DEVNAME, &1)
$DEVICES$SETATTR(Value, &2)
$END
$INCLUDE($DESIGNNAME.BAK) $EXECUTE(LineBlock)

The block LineBlock will be executed once for each line in the specified include
file. During the execution of this block, the $TEXTLINE keyword represents the
value of the line just read from the file. In this case, the regular expression
command is used to extract two text fields from each line. The first field is used
to locate a device by name and the second field is used as a new setting for the
Value attribute field.

➢ See more information in the $INCLUDE command

Keyword 158 $TIME
Status

Synopsis $TIME
$TIME(formatString)
$TIME(formatString,valueString)

Returns Text

Type Data

Where Script

Description The first form returns the current time of day in the default format. If a first
argument is provided, it is taken as a format specification and the time and date
are displayed in that format. If a second argument is provided, it is taken as the
date value integer to use for conversion.

Example $DEVICES$DEVNAME was created on $TIME($m/$d/$y at $h/$n, &DateS-
tamp.Dev)

This will output the date and time represented by the date stamp on each device.

When used without an argument list, $TIME generates the current time of day in the default
"long" format for the host machine. This behaviour can be modified by adding an argument string
containing format keywords for the various time elements that are available. Any characters in
the format string that are not recognized as one of the following items will be included literally in
the output string. If a $ character is needed in the output, it can be escaped by preceding it with a
backslash.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 150/155

$DATE and $TIME Format Codes

Code

Meaning

$M Month, long (text) form

$m Month, numeric form

$D or $d Day of the month, 1..31

$y Year, two digits

$Y Year, four digits

$h Hour, 24-hour format

$H Hour, 12-hour format

$N or $n Minute, 00..59

$S or $s Second

$R or $r Raw date value

$P AM/PM long form

$p AM/PM short form

$W Day of week, long form

$w Day of week, short form

If second argument is provided, it is taken as a decimal integer raw date value. These values
represent the number of seconds since January 1, 1904 and are used to store dates throughout
EMTPWorks. For example, the file modified and created dates, device and circuit date stamps
are stored in this format. These can be converted to human-readable format by inserting them as
a second argument to $TIME.

Note that $DATE and $TIME are identical in function when used with arguments.

➢ See also: $DATE $TIMECREATED/$TIMEMODIFIED

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 151/155

Keyword 159 $TIMECREATED/$TIMEMODIFIED
Status

Synopsis $TIMECREATED
$TIMEMODIFIED
$TIMECREATED(formatString)
$TIMEMODIFIED(formatString)

Returns Text

Type Data

Where Script

Description If used without arguments, $TIMECREATED and $TIMEMODIFIED return the
created or modified time of day of the current design in the default format. An
argument list can be added to specify any time or date format. When used with
an argument list, $TIMECREATED and $DATECREATED are identical in
function and, similarly, $TIMEMODIFIED and $DATEMODIFIED are identical.

Example Created at $TIMECREATED on $DATECREATED

These two command are variations of the $TIME command and behave identically except that
they use the created or modified date of the current design, rather than the current date.

➢ See also: $DATECREATED/$DATEMODIFIED

Keyword 160 $TYPENAME
Status

Synopsis $TYPENAME

Returns String

Type Data

Where Script - device

Description Returns the type name of the current device, that is, the name of the type
defintion as it would appear in the parts palette.

Example $SORT $DEVICES $TYPENAME
$COMBDEVSON
$DEVICES$TYPENAME $DEVNAME

This will generate a simple bill of materials, sorted and merged by type name.

For most "bill of materials" listings, the Part attribute should be used instead of $TYPENAME. In
the standard EMTPWorks libraries, the Part field contains the actual manufacturers part number,
whereas the type name may be contracted or include some gate packaging information. In
addition, the type name cannot normally be edited in a schematic, so it gives less flexibility.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 152/155

Keyword 161 $UNCONNPINSOFF/$UNCONNPINSON
Status

Synopsis $UNCONNPINSOFF
$UNCONNPINSON

Returns N. A.

Type Definition

Where Top level

Description When ON, allows device pins that have no signal lines attached to them and are
not connected to any other signals by name to appear in the netlist, otherwise
they are suppressed. Default is ON.

Example $UNCONNPINSOFF

➢ See also: $ISUNCONNPIN

Keyword 162 $UNNAMEDDEVS
Status

Synopsis $UNNAMEDDEVS(string)

Returns N. A.

Type Definition

Where Top level

Description This command sets the string to be output when $DEVNAME is referred to for an
unnamed device. The default is "unnamed".

Example $UNNAMEDDEVS()

This specifies that nothing (a null string) should be output when the name of an
unnamed signal is requested.

Keyword 163 $UNNAMEDSIGS
Status

Synopsis $UNNAMEDSIGS(string)

Returns N. A.

Type Definition

Where Top level

Description This command sets the string to be output when $SIGNAME is referred to for an
unnamed signal. The default is "unnamed".

Example $UNNAMEDSIGS()

This specifies that nothing (a null string) should be output when the name of an
unnamed signal is requested.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 153/155

Keyword 164 $UNSELECTEDPINS
Status

Synopsis $UNSELECTEDPINS [$ON|$OFF] [$WARN|$NOWARN]

Returns N. A.

Type Definition

Where Top level

Description This command determines what action is taken when an attempt is made to list a
pin which is linked to a signal that is not selected for listing. The default is $ON
$WARN.

Example $UNSELECTEDPINS $OFF

This specifies that any pins that are attached to signals that are not selected for
listing should be skipped.

When the Scripter generates a netlist report from a design, it makes its own internal list of the
devices ans signals to be included. The list takes into account the hierarchy mode of the report
and any $FIND commands that have been executed. It is possible using $FIND commands to
create a situation in which you are creating a $DEVICES $PINS listing (e.g. a SPICE-format
netlist) which is requesting information about a pin that is not in any selected signal.

The $ON/$OFF setting lets you choose whether pins on unselected signals are included in the
listing. Setting this to $OFF means that such signals are not included. The default is $ON.

The $WARN/$NOWARN setting determines if a warning is issued if an attempt is made to extract
data about a signal that is not selected. The default is $WARN.

The setting $UNSELECTEDPINS $OFF $NOWARN is primarily useful in cases where it is
desired to completely omit some device pins if they are not attached to anything in the schematic.
This can be useful especially in FPGA netlists where logic can be omitted if not used.

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 154/155

Keyword 165 $UNUSEDUNITS
Status

Synopsis $UNUSEDUNITS

Returns Text

Type Data

Where Script - Design

Description Generates a text list of the free gate units in the current design. There is no
control over the fomat of this listing.

Example $UNUSEDUNITS
This will generate a listing like this one:
U12 74ALS00DN a c
U34 74ALS1120 b c
etc.

This command produces a text string which enumerates the gate units in the Packager’s free
gate table. This type of report can be used to optimize use of gate packages or to provide
documentation on the schematic itself of unused units.

See more information on packaging in the chapter "Device Packaging and Naming" in the
EMTPWorks User’s Guide.

Keyword 166 $UPPERCASE
Status

Synopsis $UPPERCASE(string)

Returns String

Type Data

Where Script

Description Converts all alphabetic characters in the argument to upper case. Non-alpha-
betic characters are not changed..

Example $UPPERCASE($DEVNAME)

➢ See also: $LOWERCASE

EMTP®-EMTPWorks – Report Script Language Reference, 27/05/2021 155/155

Keyword 167 $VERIFY
Status

Synopsis $VERIFY(blockName, string)

Returns Boolean

Type Data

Where Script

Description Used to determine if a given string value is in a list of allowable values. Returns
TRUE if the given string is in the mapping table.

Example $DEFINEBLOCK(GoodPkgs)
DIP14
DIP16
DIP20
$END
$IF($NOT($VERIFY(GoodPkgs, &Package)))Bad package!$END

This command allows you to determine if a given string value exists in a table of values. The
table format is exactly the same as that used for the $MAP command but in this case the second
column of the table (if specified) is ignored. You can therefore use the same table in two different
places, once for error checking and elsewhere for actually mapping an output value.

➢ See the $MAP keyword for the table format.

Keyword 168 $WRITETRANSCRIPT
Status

Synopsis $WRITETRANSCRIPT(string)

Returns N.A.

Type Definition

Where Script

Description Writes the specified string to the current transcript file.

Example $WRITETRANSCRIPT(We got &ErrCnt errors!)

This command writes the specified string to the current transcript file. Note that the string
argument can be a literal string or any combination of script commands that generates a string.

If there is no current transcript file (i.e. if no $CREATE TRANSCRIPT has been done), no output
is generated and this command is ignored.

➢ See also $CREATETRANSCRIPT and “File Input and Output” on page 37.

	X19913_colon_KWHeading2_colon__dollarsig
	X27667_colon_KWHeading2_colon__dollarsig
	OLE_LINK1
	X34088_colon_KWHeading2_colon__dollarsig
	X28085_colon_KWHeading2_colon__dollarsig
	X38501_colon_heading4_colon__dollarsign_
	X33405_colon_KWHeading2_colon__dollarsig
	X37067_colon_KWHeading2_colon__dollarsig
	X27895_colon_KWHeading2_colon__dollarsig
	X14812_colon_KWHeading2_colon__dollarsig
	X22974_colon_KWHeading2_colon__dollarsig
	X41886_colon_KWHeading2_colon__dollarsig
	X28719_colon_heading3_colon_UsinganExter
	X33751_colon_KWHeading2_colon__dollarsig
	X12887_colon_heading4_colon_MappingTable
	X20996_colon_KWHeading2_colon__dollarsig
	X32485_colon_KWHeading2_colon__dollarsig
	X18618_colon_KWHeading2_colon__dollarsig
	X33808_colon_KWHeading2_colon__dollarsig

